SummaryPresent-day soybeans consist of elite cultivars and landraces (Glycine max, fully domesticated (FD)), annual wild type (Glycine soja, nondomesticated (ND)), and semi-wild type (semi-domesticated (SD)). FD soybean originated in China, although the details of its domestication history remain obscure.More than 500 diverse soybean accessions were sequenced using specific-locus amplified fragment sequencing (SLAF-seq) to address fundamental questions regarding soybean domestication.In total, 64 141 single nucleotide polymorphisms (SNPs) with minor allele frequencies (MAFs) > 0.05 were found among the 512 tested accessions. The results indicated that the SD group is not a hybrid between the FD and ND groups. The initial domestication region was pinpointed to central China (demarcated by the Great Wall to the north and the Qinling Mountains to the south). A total of 800 highly differentiated genetic regions and > 140 selective sweeps were identified, and these were three-and twofold more likely, respectively, to encompass a known quantitative trait locus (QTL) than the rest of the soybean genome. Forty-three potential quantitative trait nucleotides (QTNs; including 15 distinct traits) were identified by genome-wide association mapping.The results of the present study should be beneficial for soybean improvement and provide insight into the genetic architecture of traits of agronomic importance.
Ordered and flexible porous frameworks with solution processability are highly desirable to fabricate continuous and large‐scale membranes for the efficient gas separation. Herein, the first microporous hydrogen‐bonded organic framework (HOF) membrane has been fabricated by an optimized solution‐processing technique. The framework exhibits the superior stability because of the abundant hydrogen bonds and strong π–π interactions. Thanks to the flexible HOF structure, the membrane possesses the unprecedented pressure‐responsive H2/N2 separation performance. Furthermore, the scratched membrane can be healed by the treatment of solvent vapor, achieving the recovery of separation performance.
The separation of ethylene (C 2 H 4 )from amixture of ethane (C 2 H 6 ), ethylene (C 2 H 4 ), and acetylene (C 2 H 2 )a t normal temperature and pressure is as ignificant challenge. The sieving effect of pores is powerless due to the similar molecular size and kinetic diameter of these molecules.W e report an ew modification method based on as table ftw topological Zr-MOF platform (MOF-525). Introduction of acyclopentadiene cobalt functional group led to new ftw-type MOFs materials (UPC-612 and UPC-613), which increase the host-guest interaction and achieve efficient ethylene purification from the mixture of hydrocarbon gases.T he high performance of UPC-612 and UPC-613 for C 2 H 2 /C 2 H 4 / C 2 H 6 separation has been verified by gas sorption isotherms, density functional theory (DFT), and experimentally determined breakthrough curves.T his work provides ao ne-step separation of the ternary gas mixture and can further serve as ablueprint for the design and construction of function-oriented porous structures for such applications.
Atomistic molecular dynamics simulations have been performed to explore the effect of interfacial bonding on the interphase properties of a nanocomposite system that consists of a silica nanoparticle and the highly cross-linked epoxy matrix. For the structural properties, results show that interfacial covalent bonding can broaden the interphase region by increasing the radial effect range of fluctuated mass density and oriented chains, as well as strengthen the interphase region by improving the thermal stability of interfacial van der Waals excluded volume and reducing the proportion of cis conformers of epoxy segments. The improved thermal stability of the interphase region in the covalently bonded model results in an increase of ∼21 K in the glass transition temperature (Tg) compared to that of the pure epoxy. It is also found that interfacial covalent bonding mainly restricts the volume thermal expansion of the model at temperatures near or larger than Tg. Furthermore, investigations from mean-square displacement and fraction of immobile atoms point out that interfacial covalent and noncovalent bonding induces lower and higher mobility of interphase atoms than that of the pure epoxy, respectively. The obtained critical interfacial bonding ratio when the interphase and matrix atoms have the same mobility is 5.8%. These results demonstrate that the glass transitions of the interphase and matrix will be asynchronous when the interfacial bonding ratio is not 5.8%. Specifically, the interphase region will trigger the glass transition of the matrix when the ratio is larger than 5.8%, whereas it restrains the glass transition of the matrix when the ratio is smaller than 5.8%.
Intention inference can be an essential step toward efficient humanrobot interaction. For this purpose, we propose the Intention-Driven Dynamics Model (IDDM) to probabilistically model the generative process of movements that are directed by the intention. The IDDM allows to infer the intention from observed movements using Bayes' theorem. The IDDM simultaneously finds a latent state representation of noisy and highdimensional observations, and models the intention-driven dynamics in the latent states. As most robotics applications are subject to real-time constraints, we develop an efficient online algorithm that allows for real-time intention inference. Two human-robot interaction scenarios, i.e., target prediction for robot table tennis and action recognition for interactive humanoid robots, are used to evaluate the performance of our inference algorithm. In both intention inference tasks, the proposed algorithm achieves substantial improvements over support vector machines and Gaussian processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.