This study has focused on numerically exploring the oxygen flow in the convergent‐divergent De Laval nozzle. The De Laval nozzle has been commonly used as oxygen outlet at the lance tip in the vacuum oxygen decarburization (VOD) process. The nozzle geometry used in an active VOD plant was investigated by isentropic nozzle theory as well as by numerical modeling. Since an optimal nozzle design is only valid for a certain ambient pressure, one VOD nozzle will be less efficient for a large part of the pressure cycle. Different ambient pressures were used in the calculations that were based on the De Laval nozzle theory. Flow patterns of the oxygen jet under different ambient pressures were studied and the flow information at different positions from the nozzle was analyzed. In addition, the study compared the effects of different ambient temperatures on jet velocity and dynamic pressure. The predictions revealed that the modeling results obtained with the CFD modeling showed incorrect flow expansion, which agreed well with the results from the De Laval theory. Moreover, a little under‐expansion is somewhat helpful to improve the dynamic pressure. The jet dynamic pressure and its width for the specific nozzle geometry have also been studied. It has been observed that an altering ambient pressure can influence the jet momentum and its width. In addition, a high ambient temperature has a positive effect on the improvement of the jet dynamic pressure.
Studies of physical phenomena in a jet caused by VOD (Vacuum Oxygen Decarburization) nozzles have been carried out. The VOD process is a metallurgical process where the steel-making route is controlled under vacuum environment with oxygen top blowing. In this work, two VOD nozzle models have been employed for an investigation based on two real De Laval geometries used in industry. Numerical modeling was used to study oxygen blowing states of the nozzles at different temperatures and ambient pressures. The nozzle models were numerically computed with two dimensional domains, where vacuum conditions and temperatures were specifically defined. The modeling results showed that one of the nozzles was more applicably proper for lower pressures, displaying a more stable flow pattern. Furthermore, it was found that a change in ambient pressure has a stronger effect on the jet force than a change in ambient temperature. In addition, it was proved that the profiles of the dynamic pressure at a certain blowing distance fit well to Multi-Gaussian curves.
An investigation on the post-combustion phenomena in an argon oxygen decarburization (AOD) system containing a converter and a flue has been conducted. An AOD converter is mainly characterized by nozzles installed at the lower side of the converter. The nozzles are intended to inject the decarburization gas of oxygen mixed with an inert gas such as argon. The injection promotes stirring and lowers the partial pressure of CO in the converter. For the AOD converter of interest in the current work, a fan is installed in the end of the AOD flue to help extract the off-gas from the converter. The influence of different fan gauge pressures as well as temperatures of the gas mixture, containing the generated CO and argon, on the postcombustion in the whole AOD system was studied. The realizable k-e model was employed as the turbulence model. In addition, the reaction and radiation were also taken into account by use of the species transport model and the discrete ordinate model. It was indicated from the modeling results that the post-combustion was only present in the flue for the present modeling conditions. Moreover, a critical fan gauge pressure was found, which could yield a maximum post-combustion in the flue gas. Finally, no obvious change on the post-combustion was shown if the inlet gas mixture temperature was varied between 1500 and 17008C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.