Electrochromic materials (EMs) are widely used color-switchable materials, but their applications as stimuli-responsive biomaterials to monitor and control biological processes remain unexplored. This study reports the engineering of an organic π-electron structure-based EM (dicationic 1,1,4,4-tetraarylbutadiene, 1 2+) as a unique hydrogen sulfide (H2S)-responsive chromophore amenable to build H2S-activatable fluorescent probes (1 2+-semiconducting polymer nanoparticles, 1 2+-SNPs) for in vivo H2S detection. We demonstrate that EM 1 2+, with a strong absorption (500–850 nm), efficiently quenches the fluorescence (580, 700, or 830 nm) of different fluorophores within 1 2+-SNPs, while the selective conversion into colorless diene 2 via H2S-mediated two-electron reduction significantly recovers fluorescence, allowing for non-invasive imaging of hepatic and tumor H2S in mice in real time. Strikingly, EM 1 2+ is further applied to design a near-infrared photosensitizer with tumor-targeting and H2S-activatable ability for effective photodynamic therapy (PDT) of H2S-related tumors in mice. This study demonstrates promise for applying EMs to build activatable probes for molecular imaging of H2S and selective PDT of tumors, which may lead to the development of new EMs capable of detecting and regulating essential biological processes in vivo.
The noninvasive and specific detection of cancer cells in living subjects has been essential for the success of cancer diagnoses and treatments. Herein, we report a strategy of combining an αβ-integrin-receptor-targetable ligand, c-RGD, with the γ-glutamyl transpeptidase (GGT)-recognizable substrate, γ-glutamate (γ-Glu), to develop a tumor-targeting and GGT-activatable near-infrared (NIR)-fluorescent probe for the noninvasive imaging of tumors in living mice. We demonstrated that the probe's fluorescence was off initially, but when the γ-Glu in the probe was specifically cleaved by GGT, the fluorescent product was released and could be selectively taken up by U87MG-tumor cells via αβ-receptor-mediated endocytosis. Remarkably, enhanced intracellular NIR fluorescence distributed mainly in the lysosomes was observed in the tumor cells only, showing that the probe was capable of differentiating the tumor cells from the GGT-positive, αβ-deficient normal cells. Moreover, the probe also showed a high selectivity for the real-time and noninvasive detection of GGT activity in xenograft U87MG tumors following iv administration. This study reveals the advantage of using a combination of receptor-mediated cell uptake and molecular-target-triggered activation to design molecular probes for improved cancer imaging, which could facilitate effective cancer diagnoses.
Activatable multimodal probes that show enhancement of multiplex imaging signals upon interaction with their specific molecular target have become powerful tools for rapid and precise imaging of biological processes. Herein, we report a stimuli-responsive disassembly approach to construct a redox-activatable fluorescence/F-MRS/H-MRI triple-functional probe 1. The small molecule probe 1 itself has a high propensity to self-assemble into nanoparticles with quenched fluorescence, attenuated F-MRS signal, and highH-MRI contrast. Biothiols that are abundant in reducing biological environment were able to cleave the disulfide bond in probe 1 to induce disassembly of the nanoparticles and lead to fluorescence activation (∼70-fold), F-MRS signal amplification (∼30-fold) and significant r relaxivity reduction (∼68% at 0.5 T). Molecular imaging of reducing environment in live cells and in vivo was realized using probe 1. This approach could facilitate the development of other stimuli-responsive trimodal probes for molecular imaging.
γ-Glutamyl transpeptidase (GGT) is a cell-membrane-bound enzyme that is involved in various physiological and pathological processes and is regarded as a potential biomarker for many malignant tumors, precise detection of which is useful for early cancer diagnosis. Herein, a new GGT-activatable near-infrared (NIR) fluorescence imaging probe (GANP) by linking of a GGT-recognitive substrate γ-glutamate (γ-Glu) and a NIR merocyanine fluorophore (mCy-Cl) with a self-immolative linker p-aminobenzyl alcohol (PABA) is reported. GANP was stable under physiological conditions, but could be efficiently activated by GGT to generate ≈100-fold enhanced fluorescence, enabling high sensitivity (detection limit of ≈3.6 mU L ) and specificity for the real-time imaging of GGT activity as well as rapid evaluation of the inhibition efficacy of GGT inhibitors in living tumor cells. Notably, the deep tissue penetration ability of NIR fluorescence could further allow GANP to image GGT in frozen tumor tissue slices with large penetration depth (>100 μm) and in xenograft tumors in living mice. This GGT activatable NIR fluorescence imaging probe could facilitate the study and diagnosis of other GGT-correlated diseases in vivo.
γ-Glutamyltranspeptidase (GGT) is a cell-membrane-bound protease that participates in cellular glutathione and cysteine homeostasis, which are closely related to many physiological and pathological processes. The accurate measurement of GGT activity is useful for the early diagnosis of diseases. In the past few years, many efforts have been made to build optical imaging probes for the detection of GGT activity both in vitro and in vivo. In this Minireview, recent advances in the development of various optical imaging probes for GGT, including activatable fluorescence probes, ratiometric fluorescence probes, and activatable bioluminescence probes, are summarized. This review starts from the instruction of the GGT enzyme and its biological functions, followed by a discussion of activatable fluorescence probes that show off-on fluorescence in response to GGT. GGT-activatable two-photon fluorescence imaging probes with improved imaging depth and spatial resolution are also discussed. Ratiometric fluorescence probes capable of accurately reporting on GGT levels through a self-calibration mechanism are discussed, followed by describing GGT-activatable bioluminescence probes that can offer a high signal-to-background ratio to detect GGT in living mice. Finally, current challenges and further perspectives for the development of molecular imaging probes for GGT are addressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.