It is of both fundamental and practical interest to study the flow physics in the manipulation of droplets. In this paper, we investigate complex flow in liquid droplets actuated by a linear gradient of wettability using dissipative particle dynamics simulation. The wetting property of the substrate ranging from hydrophilic to hydrophobic is achieved by adjusting the conservative solid-liquid interactions which results in a variation of solid-liquid surface tension. The internal three-dimensional velocity field with transverse flow in droplet is revealed and analyzed in detail. When the substrate is hydrophobic, it is found that there is slight deformation but strong flow circulation inside the droplet, and the droplet rolling is the dominant mechanism for the movement. However, large deformation of the droplet is generated after the droplet reaches the hydrophilic surface, and a mechanism combining rolling and sliding dominates the transportation of the droplet. Another interesting finding is that the thermal fluctuation can accelerate the spontaneous motion of a liquid droplet under a wetting gradient. The effects of the steepness of wetting gradient and the size of droplet on the translation speed are studied as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.