Earthquake damage investigation is critical to post-earthquake structural recovery and reconstruction. In this study, a method of assessing the component failure mode and damage level was established based on object detection and recognition. A quantitative structural damage level assessment method was developed based on the type and extent of damage to the components. A You Only Look Once v4 (YOLOv4) network was used to detect multicategory damage (fine crack, wide crack, concrete spalling, exposed rebar and buckled rebar). Depthwise separable convolution was introduced into YOLOv4 to decrease the computation cost without reducing accuracy. Finally, the damage detection method and assessment method were integrated within a graphical user interface (GUI) to facilitate the post-earthquake reinforced concrete (RC) structural damage assessment. The test results by GUI indicate that the improved object network can get accurate detection results, and the preliminary safety assessment method can judge the damage level and failure mode. The present study shows high potential for estimating the seismic damage states of RC structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.