Exploring the manifestation of emotion in electroencephalogram (EEG) signals is helpful for improving the accuracy of emotion recognition. This paper introduced the novel features based on the multiscale information analysis (MIA) of EEG signals for distinguishing emotional states in four dimensions based on Russell's circumplex model. The algorithms were applied to extract features on the DEAP database, which included multiscale EEG complexity index in the time domain, and ensemble empirical mode decomposition enhanced energy and fuzzy entropy in the frequency domain. The support vector machine and cross validation method were applied to assess classification accuracy. The classification performance of MIA methods (accuracy = 62.01%, precision = 62.03%, recall/sensitivity = 60.51%, and specificity = 82.80%) was much higher than classical methods (accuracy = 43.98%, precision = 43.81%, recall/sensitivity = 41.86%, and specificity = 70.50%), which extracted features contain similar energy based on a discrete wavelet transform, fractal dimension, and sample entropy. In this study, we found that emotion recognition is more associated with high frequency oscillations (51-100Hz) of EEG signals rather than low frequency oscillations (0.3-49Hz), and the significance of the frontal and temporal regions are higher than other regions. Such information has predictive power and may provide more insights into analyzing the multiscale information of high frequency oscillations in EEG signals. Entropy 2019, 21, 609 2 of 21 are extracted as features for emotion recognition by Lin et al. [3]. Petrantonakis et al. [4] introduced higher-order crossing features to capture the oscillatory pattern of EEG. The Hjorth parameters are developed and used to distinguish emotions [5]. Liu et al. [6] proposed the fractal dimension (FD) based algorithm on quantification of basic emotions and described its implementation as feedback in 3D virtual environments. Several entropy-based metrics of signal complexity have already been proposed for discriminating emotional states. Hosseini et al. [7] applied two entropy metrics (approximate and wavelet entropy) to discriminate between two emotional states (calm-neutral and negative-excited) in response to viewing sequences of emotion-inducing pictures and achieved 73.25% classification accuracy. Jie et al. [8] applied sample entropy (SE) to EEG data obtained from two binary emotion recognition tasks (positive vs. negative emotion both with high arousal, and music clips with different arousal levels) and achieved 80.43% and 79.11% classification performance. Murugappan et al. [9] used the discrete wavelet transform (DWT) to divide the EEG signal into several bands. Then they calculated features based on these bands. Despite the fact that some encouraging progress has been made, developing the best combination of feature extraction and classification methods still require further research.A promising development on EEG signals for emotion recognition is multiscale analysis, including correlation dimensi...
Measuring and identifying the specific level of sustained attention during continuous tasks is essential in many applications, especially for avoiding the terrible consequences caused by reduced attention of people with special tasks. To this end, we recorded EEG signals from 42 subjects during the performance of a sustained attention task and obtained resting state and three levels of attentional states using the calibrated response time. EEG-based dynamical complexity features and Extreme Gradient Boosting (XGBoost) classifier were proposed as the classification model, Complexity-XGBoost, to distinguish multi-level attention states with improved accuracy. The maximum average accuracy of Complexity-XGBoost were 81.39 ± 1.47% for four attention levels, 80.42 ± 0.84% for three attention levels, and 95.36 ± 2.31% for two attention levels in 5-fold cross-validation. The proposed method is compared with other models of traditional EEG features and different classification algorithms, the results confirmed the effectiveness of the proposed method. We also found that the frontal EEG dynamical complexity measures were related to the changing process of response during sustained attention task. The proposed dynamical complexity approach could be helpful to recognize attention status during important tasks to improve safety and efficiency, and be useful for further brain-computer interaction research in clinical research or daily practice, such as the cognitive assessment or neural feedback treatment of individuals with attention deficit hyperactivity disorders, Alzheimer’s disease, and other diseases which affect the sustained attention function.
The demand for non-laboratory and long-term EEG acquisition in scientific and clinical applications has put forward new requirements for wearable EEG devices. In this paper, a new wearable frontal EEG device called Mindeep was proposed. A signal quality study was then conducted, which included simulated signal tests and signal quality comparison experiments. Simulated signals with different frequencies and amplitudes were used to test the stability of Mindeep’s circuit, and the high correlation coefficients (>0.9) proved that Mindeep has a stable and reliable hardware circuit. The signal quality comparison experiment, between Mindeep and the gold standard device, Neuroscan, included three tasks: (1) resting; (2) auditory oddball; and (3) attention. In the resting state, the average normalized cross-correlation coefficients between EEG signals recorded by the two devices was around 0.72 ± 0.02, Berger effect was observed (p < 0.01), and the comparison results in the time and frequency domain illustrated the ability of Mindeep to record high-quality EEG signals. The significant differences between high tone and low tone in auditory event-related potential collected by Mindeep was observed in N2 and P2. The attention recognition accuracy of Mindeep achieved 71.12% and 74.76% based on EEG features and the XGBoost model in the two attention tasks, respectively, which were higher than that of Neuroscan (70.19% and 72.80%). The results validated the performance of Mindeep as a prefrontal EEG recording device, which has a wide range of potential applications in audiology, cognitive neuroscience, and daily requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.