A surge of luteinizing hormone (LH) from the pituitary gland triggers ovulation, oocyte maturation, and luteinization for successful reproduction in mammals. Because the signaling molecules RAS and ERK1/2 (extracellular signal-regulated kinases 1 and 2) are activated by an LH surge in granulosa cells of preovulatory follicles, we disrupted Erk1/2 in mouse granulosa cells and provide in vivo evidence that these kinases are necessary for LH-induced oocyte resumption of meiosis, ovulation, and luteinization. In addition, biochemical analyses and selected disruption of the Cebpb gene in granulosa cells demonstrate that C/EBPβ (CCAAT/Enhancerbinding protein-β) is a critical downstream mediator of ERK1/2 activation. Thus, ERK1/2 and C/ EBPβ constitute an in vivo LH-regulated signaling pathway that controls ovulation-and luteinization-related events.In the mammalian ovary, the female germ cells (oocytes) reside within the ovarian follicles and are surrounded by somatic cell-derived granulosa cells (GCs) and cumulus cells that have endocrine functions and control oocyte maturation. Female reproductive success depends on the growth of ovarian follicles and differentiation of GCs as well as oocyte maturation and ovulation (1,2). Although LH plays a critical role in the initiation of ovulation and in the terminal differentiation of GCs to luteal cells that compose the corpora lutea (CLs) and produce progesterone, the precise molecular targets in these processes remain ill-defined. Cyclic adenosine 3´,5´-monophosphate (cAMP) is a well-known mediator of LH action, but LH also induces expression of the epidermal growth factor
FSH activates the phosphatidylinositol-3 kinase (PI3K)/acute transforming retrovirus thymoma protein kinase pathway and thereby enhances granulosa cell differentiation in culture. To identify the physiological role of the PI3K pathway in vivo we disrupted the PI3K suppressor, Pten, in developing ovarian follicles. To selectively disrupt Pten expression in granulosa cells, Ptenfl/fl mice were mated with transgenic mice expressing cAMP response element recombinase driven by Cyp19 promoter (Cyp19-Cre). The resultant Pten mutant mice were fertile, ovulated more oocytes, and produced moderately more pups than control mice. These physiological differences in the Pten mutant mice were associated with hyperactivation of the PI3K/acute transforming retrovirus thymoma protein kinase pathway, decreased susceptibility to apoptosis, and increased proliferation of mutant granulosa cells. Strikingly, corpora lutea of the Pten mutant mice persisted longer than those of control mice. Although the follicular and luteal cell steroidogenesis in Ptenfl/fl;Cyp19-Cre mice was similar to controls, viable nonsteroidogenic luteal cells escaped structural luteolysis. These findings provide the novel evidence that Pten impacts the survival/life span of granulosa/luteal cells and that its loss not only results in the facilitated ovulation but also in the persistence of nonsteroidogenic luteal structures in the adult mouse ovary.
Activation of the RAS family of small G-proteins is essential for follicle stimulating hormone-induced signaling events and the regulation of target genes in cultured granulosa cells. To analyze the functions of RAS protein in granulosa cells during ovarian follicular development in vivo, we generated conditional knock-in mouse models in which the granulosa cells express a constitutively active Kras G12D. The Kras G12D mutant mice were subfertile and exhibited signs of premature ovarian failure. The mutant ovaries contained numerous abnormal follicle-like structures that were devoid of mitotic and apoptotic cells and cells expressing granulosa cell-specific marker genes. Follicles that proceeded to the antral stage failed to ovulate and expressed reduced levels of ovulation-related genes. The human chorionic gonadotropin-stimulated phosphorylation of ERK1/2 was markedly reduced in mutant cells. Reduced ERK1/2 phosphorylation was due, in part, to increased expression of MKP3, an ERK1/2-specific phosphatase. By contrast, elevated levels of phospho-AKT were evident in granulosa cells of immature Kras G12D mice, even in the absence of hormone treatments, and were associated with the progressive decline of FOXO1 in the abnormal follicle-like structures. Thus, inappropriate activation of KRAS in granulosa cells blocks the granulosa cell differentiation pathway, leading to the persistence of abnormal non-mitotic, non-apoptotic cells rather than tumorigenic cells. Moreover, those follicles that reach the antral stage exhibit impaired responses to hormones, leading to ovulation failure. Transient but not sustained activation of RAS in granulosa cells is therefore crucial for directing normal follicle development and initiating the ovulation process.
The forkhead box transcription factor FOXO1 is highly expressed in granulosa cells of growing follicles but is down-regulated by FSH in culture or by LH-induced luteinization in vivo. To analyze the function of FOXO1, we infected rat and mouse granulosa cells with adenoviral vectors expressing two FOXO1 mutants: a gain-of-function mutant FOXOA3 that has two serine residues and one threonine residue mutated to alanines rendering this protein constitutively active and nuclear and FOXOA3-mutant DNA-binding domain (mDBD) in which the DBD is mutated. The infected cells were then treated with vehicle or FSH for specific time intervals. Infection of the granulosa cells was highly efficient, caused only minimal apoptosis, and maintained FOXO1 protein at levels of the endogenous protein observed in cells before exposure to FSH. RNA was prepared from control and adenoviral infected cells exposed to vehicle or FSH for 12 and 24 h. Affymetrix microarray and database analyses identified, and real time RT-PCR verified, that genes within the lipid, sterol, and steroidogenic biosynthetic pathways (Hmgcs1, Hmgcr, Mvk, Sqle, Lss, Cyp51, Tm7sf2, Dhcr24 and Star, Cyp11a1, and Cyp19), including two key transcriptional regulators Srebf1 and Srebf2 of cholesterol biosynthesis and steroidogenesis (Nr5a1, Nr5a2), were major targets induced by FSH and suppressed by FOXOA3 and FOXOA3-mDBD in the cultured granulosa cells. By contrast, FOXOA3 and FOXOA3-mDBD induced expression of Cyp27a1 mRNA that encodes an enzyme involved in cholesterol catabolism to oxysterols. The genes up-regulated by FSH in cultured granulosa cells were also induced in granulosa cells of preovulatory follicles and corpora lutea collected from immature mice primed with FSH (equine choriogonadotropin) and LH (human choriogonadotropin), respectively. Conversely, Foxo1 and Cyp27a1 mRNAs were reduced by these same treatments. Collectively, these data provide novel evidence that FOXO1 may play a key role in granulosa cells to modulate lipid and sterol biosynthesis, thereby preventing elevated steroidogenesis during early stages of follicle development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.