The Uyghur people residing in Xinjiang, a territory located in the far west of China and crossed by the Silk Road, are a key ethnic group for understanding the history of human dispersion in Eurasia. Here we assessed the genetic structure and ancestry of 951 Xinjiang's Uyghurs (XJU) representing 14 geographical subpopulations. We observed a southwest and northeast differentiation within XJU, which was likely shaped jointly by the Tianshan Mountains, which traverses from east to west as a natural barrier, and gene flow from both east and west directions. In XJU, we identified four major ancestral components that were potentially derived from two earlier admixed groups: one from the West, harboring European (25-37%) and South Asian ancestries (12-20%), and the other from the East, with Siberian (15-17%) and East Asian (29-47%) ancestries. By using a newly developed method, MultiWaver, the complex admixture history of XJU was modeled as a two-wave admixture. An ancient wave was dated back to ∼3,750 years ago (ya), which is much earlier than that estimated by previous studies, but fits within the range of dating of mummies that exhibited European features that were discovered in the Tarim basin, which is situated in southern Xinjiang (4,000-2,000 ya); a more recent wave occurred around 750 ya, which is in agreement with the estimate from a recent study using other methods. We unveiled a more complex scenario of ancestral origins and admixture history in XJU than previously reported, which further suggests Bronze Age massive migrations in Eurasia and East-West contacts across the Silk Road.
The National Genomics Data Center (NGDC) provides a suite of database resources to support worldwide research activities in both academia and industry. With the rapid advancements in higher-throughput and lower-cost sequencing technologies and accordingly the huge volume of multi-omics data generated at exponential scales and rates, NGDC is continually expanding, updating and enriching its core database resources through big data integration and value-added curation. In the past year, efforts for update have been mainly devoted to BioProject, BioSample, GSA, GWH, GVM, NONCODE, LncBook, EWAS Atlas and IC4R. Newly released resources include three human genome databases (PGG.SNV, PGG.Han and CGVD), eLMSG, EWAS Data Hub, GWAS Atlas, iSheep and PADS Arsenal. In addition, four web services, namely, eGPS Cloud, BIG Search, BIG Submission and BIG SSO, have been significantly improved and enhanced. All of these resources along with their services are publicly accessible at https://bigd.big.ac.cn.
BackgroundThe genetic relationships reported by recent studies between Sherpas and Tibetans are controversial. To gain insights into the population history and the genetic basis of high-altitude adaptation of the two groups, we analyzed genome-wide data in 111 Sherpas (Tibet and Nepal) and 177 Tibetans (Tibet and Qinghai), together with available data from present-day human populations.ResultsSherpas and Tibetans show considerable genetic differences and can be distinguished as two distinct groups, even though the divergence between them (~3200–11,300 years ago) is much later than that between Han Chinese and either of the two groups (~6200–16,000 years ago). Sub-population structures exist in both Sherpas and Tibetans, corresponding to geographical or linguistic groups. Differentiation of genetic variants between Sherpas and Tibetans associated with adaptation to either high-altitude or ultraviolet radiation were identified and validated by genotyping additional Sherpa and Tibetan samples.ConclusionsOur analyses indicate that both Sherpas and Tibetans are admixed populations, but the findings do not support the previous hypothesis that Tibetans derive their ancestry from Sherpas and Han Chinese. Compared to Tibetans, Sherpas show higher levels of South Asian ancestry, while Tibetans show higher levels of East Asian and Central Asian/Siberian ancestry. We propose a new model to elucidate the differentiated demographic histories and local adaptations of Sherpas and Tibetans.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-017-1242-y) contains supplementary material, which is available to authorized users.
Structural variants (SVs) may play important roles in human adaptation to extreme environments such as high altitude but have been under-investigated. Here, combining long-read sequencing with multiple scaffolding techniques, we assembled a high-quality Tibetan genome (ZF1), with a contig N50 length of 24.57 mega-base pairs (Mb) and a scaffold N50 length of 58.80 Mb. The ZF1 assembly filled 80 remaining N-gaps (0.25 Mb in total length) in the reference human genome (GRCh38). Markedly, we detected 17 900 SVs, among which the ZF1-specific SVs are enriched in GTPase activity that is required for activation of the hypoxic pathway. Further population analysis uncovered a 163-bp intronic deletion in the MKL1 gene showing large divergence between highland Tibetans and lowland Han Chinese. This deletion is significantly associated with lower systolic pulmonary arterial pressure, one of the key adaptive physiological traits in Tibetans. Moreover, with the use of the high-quality de novo assembly, we observed a much higher rate of genome-wide archaic hominid (Altai Neanderthal and Denisovan) shared non-reference sequences in ZF1 (1.32%–1.53%) compared to other East Asian genomes (0.70%–0.98%), reflecting a unique genomic composition of Tibetans. One such archaic hominid shared sequence—a 662-bp intronic insertion in the SCUBE2 gene—is enriched and associated with better lung function (the FEV1/FVC ratio) in Tibetans. Collectively, we generated the first high-resolution Tibetan reference genome, and the identified SVs may serve as valuable resources for future evolutionary and medical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.