The Tibetan Plateau (TP), as a whole, has undergone a moistening process since the late 1990s. However, the southern Tibetan Plateau (STP) is an exception, where summer monsoon precipitation amount has decreased, and lakes have shrunk. The cause for the precipitation decrease is not clear yet. Here we show that the monsoon (June to September) mean precipitation changes in the STP from 1979 to 2018 features a decadal variation component with a peak of around 10 years that is superposed on an upward ‘trend’ from 1979 to 1998 and a downward ‘trend’ afterward. We find that the decadal variation of the STP precipitation is associated with a large-scale dipolar sea surface temperature (SST) pattern between the equatorial central Pacific and the Indo-Pacific warm pool. A wet STP corresponds to negative SST anomaly in the equatorial central Pacific and positive SST anomaly in the Indo-Pacific warm pool. This equatorial SST gradient in the western Pacific generates pronounced easterly anomalies and a dipolar rainfall anomaly (i.e. a positive rainfall anomaly over the Maritime Continent and a negative anomaly in the equatorial western and central Pacific). Due to less precipitation over the equatorial western Pacific, the suppressed heat source appears to excite an anomalous anticyclonic band along 15–20° N extending from the Philippine Sea to the Bay of Bengal by emanating westward propagating descending transient Rossby waves. The low-level anticyclonic circulation over the Bay of Bengal further enhances northward moisture transport toward the STP and promote upward motion in the STP through changing local meridional circulation. Besides, the linearized atmospheric general circulation model experiments demonstrate that the dipole heating source can generate a high-pressure zone under the control of anticyclone over the western Pacific, which can extend westward to the Indian monsoon region.
Multiple bias-corrected top-quality reanalysis datasets, gauge-based observations, and selected satellite products are synthetically employed to revisit the climatology and variability of the summer atmospheric heat sources over the Tibetan Plateau (TP). Verification-based selection and ensemble-mean methods are utilized to combine various datasets. Different from previous works, this study pays special attention to estimating the total heat source (TH) and its components over the data-void western plateau (70°–85°E), including the surface sensible heat (SH), latent heat released by precipitation (LH), and net radiation flux (RD). Consistent with previous studies, the climatology of summer SH (LH) typically increases (decreases) from southeast to northwest. Generally, LH dominates TH over most of the TP. A notable new finding is a minimum TH area over the high-altitude region of the northwestern TP, where the Karakoram mountain range is located. We find that during the period of 1984–2006, TH shows insignificant trends over the eastern and central TP, whereas it exhibits an evident increasing trend over the western TP that is attributed to the rising tendency of LH before 1996 and to that of RD after 1996. The year-to-year variation of TH over the central–eastern TP is highly correlated with that of LH, but that is not the case over the western TP. It is also worth noting that the variations of TH in each summer month are not significantly correlated with each other, and hence study of the interannual variation of the TP heat sources should consider the remarkable subseasonal variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.