The increasing interest in Achmatowicz rearrangement in organic synthesis calls for a more environmentally friendly protocol since the most popular oxidants m-CPBA and NBS produced stoichiometric organic side product (m-chlorobenzoic acid or succinimide). Mechanism-guided analysis enables us to develop a new catalytic method (Oxone/KBr) for AchR in excellent yield with K2SO4 as the only side product, which greatly facilitates the purification. This protocol was integrated with other transformations, leading to a rapid access to the highly functionalized dihydropyranones.
Fully functionalized pyranuloses derived from Achmatowicz rearrangement (AR) are versatile building blocks in organic synthesis. However, access to trans-2,6-dihydropyrans from pyranuloses remains underexplored. Herein, we report a new two-step trans arylation of AR products to access 2,6-trans-dihydropyranones. This new trans-arylation method built on numerous plausible, but unsuccessful, direct arylation reactions, including Ferrier-type and Tsuji-Trost-type reactions, was finally enabled by an unprecedented, highly regioselective γ-deoxygenation of AR products by using Zn/HOAc and a diastereoselective Heck-Matsuda coupling. The synthetic utility of the reaction was demonstrated in the first asymmetric total synthesis of (-)-musellarins A-C and 12 analogues in 11-12 steps. The brevity and efficiency of our synthetic route permitted preparation of enantiomerically pure musellarins and analogues (>20 mg) for preliminary cytotoxicity evaluation, which led us to identify two analogues with three-to-six times greater potency than the musellarins as promising new leads.
The first, diastereoselective total syntheses of musellarins A-C were achieved concisely with 7.8-9.8% yields in 15-16 steps. The key synthetic features include (i) an Achmatowicz rearrangement, Kishi reduction, and Friedel-Crafts cyclization to construct the tricyclic framework and (ii) Heck coupling of aryldiazonium salts to introduce the aryl group into the dihydropyran in a 2,6-trans fashion in the final stage of synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.