Intestinal microbiome dysbiosis has been consistently described in patients with IBD. In the last decades, Escherichia coli, and the adherent-invasive E coli (AIEC) pathotype in particular, has been implicated in the pathogenesis of IBD. Since the discovery of AIEC, two decades ago, progress has been made in unravelling these bacteria characteristics and its interaction with the gut immune system. The mechanisms of adhesion of AIEC to intestinal epithelial cells (via FimH and cell adhesion molecule 6) and its ability to escape autophagy when inside macrophages are reviewed here. We also explore the existing data on the prevalence of AIEC in patients with Crohn’s disease and UC, and the association between the presence of AIEC and disease location, activity and postoperative recurrence. Finally, we highlight potential therapeutic strategies targeting AIEC colonisation of gut mucosa, including the use of phage therapy, bacteriocins and antiadhesive molecules. These strategies may open new avenues for the prevention and treatment of IBD in the future.
ObjectiveThe impact of faecal microbiota transplantation (FMT) on microbiota engraftment in patients with metabolic syndrome is uncertain. We aimed to study whether combining FMT with lifestyle modification could enhance the engraftment of favourable microbiota in obese patients with type 2 diabetes mellitus (T2DM).DesignIn this double-blind, randomised, placebo-controlled trial, 61 obese subjects with T2DM were randomly assigned to three parallel groups: FMT plus lifestyle intervention (LSI), FMT alone, or sham transplantation plus LSI every 4 weeks for up to week 12. FMT solution was prepared from six healthy lean donors. Faecal metagenomic sequencing was performed at baseline, weeks 4, 16 and 24. The primary outcome was the proportion of subjects acquiring ≥20% of microbiota from lean donors at week 24.ResultsProportions of subjects acquiring ≥20% of lean-associated microbiota at week 24 were 100%, 88.2% and 22% in the FMT plus LSI, FMT alone, and sham plus LSI groups, respectively (p<0.0001). Repeated FMTs significantly increased the engraftment of lean-associated microbiota (p<0.05). FMT with or without LSI increased butyrate-producing bacteria. Combining LSI and FMT led to increase in Bifidobacterium and Lactobacillus compared with FMT alone (p<0.05). FMT plus LSI group had reduced total and low-density lipoprotein cholesterol and liver stiffness at week 24 compared with baseline (p<0.05).ConclusionRepeated FMTs enhance the level and duration of microbiota engraftment in obese patients with T2DM. Combining lifestyle intervention with FMT led to more favourable changes in recipients’ microbiota and improvement in lipid profile and liver stiffness.Trial registration numberNCT03127696.
ObjectiveThe gut microbiota has been suggested to play a role in autism spectrum disorder (ASD). We postulate that children with ASD harbour an altered developmental profile of the gut microbiota distinct from that of typically developing (TD) children. Here, we aimed to characterise compositional and functional alterations in gut microbiome in association with age in children with ASD and to identify novel faecal bacterial markers for predicting ASD.DesignWe performed deep metagenomic sequencing in faecal samples of 146 Chinese children (72 ASD and 74 TD children). We compared gut microbial composition and functions between children with ASD and TD children. Candidate bacteria markers were identified and validated by metagenomic analysis. Gut microbiota development in relation to chronological age was assessed using random forest model.ResultsASD and chronological age had the most significant and largest impacts on children’s faecal microbiome while diet showed no correlation. Children with ASD had significant alterations in faecal microbiome composition compared with TD children characterised by increased bacterial richness (p=0.021) and altered microbiome composition (p<0.05). Five bacterial species were identified to distinguish gut microbes in ASD and TD children, with areas under the receiver operating curve (AUC) of 82.6% and 76.2% in the discovery cohort and validation cohort, respectively. Multiple neurotransmitter biosynthesis related pathways in the gut microbiome were depleted in children with ASD compared with TD children (p<0.05). Developing dynamics of growth-associated gut bacteria (age-discriminatory species) seen in TD children were lost in children with ASD across the early-life age spectrum.ConclusionsGut microbiome in Chinese children with ASD was altered in composition, ecological network and functionality compared with TD children. We identified novel bacterial markers for prediction of ASD and demonstrated persistent underdevelopment of the gut microbiota in children with ASD which lagged behind their respective age-matched peers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.