The use of seawater to prepare geopolymers has attracted significant research attention; however, the ions in seawater considerably influence the properties of the resulting geopolymers. This study investigated the effects of magnesium salts and alkaline solutions on the microstructure and properties of ground-granulated-blast-furnace-slag-based geopolymers. The magnesium salt–free Na2SiO4-activatied geopolymer exhibited a much higher 28 d compressive strength (63.5 MPa) than the salt-free NaOH-activatied geopolymer (31.4 MPa), with the former mainly containing an amorphous phase (C-(A)-S-H gel) and the latter containing numerous crystals. MgCl2·6H2O addition prolonged the setting times and induced halite and Cl-hydrotalcite formation. Moreover, mercury intrusion porosimetry and scanning electron microscopy revealed that the Na2SiO4-activated geopolymer containing 8.5 wt% MgCl2·6H2O exhibited a higher critical pore size (1624 nm) and consequently, a lower 28 d compressive strength (30.1 MPa) and a more loosely bound geopolymer matrix than the salt-free geopolymer. In contrast, MgSO4 addition had less pronounced effects on the setting time, mineral phase, and morphology. The Na2SiO4-activated geopolymer with 9.0 wt% MgSO4 exhibited a compressive strength of 42.8 MPa, also lower than that of the salt-free geopolymer. The results indicate that Cl− is more harmful to the GGBFS-based geopolymer properties and microstructure than SO42− is.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.