This study presented a method for modeling the nonlinear system of a planetary gearbox and the fault diagnosis of a crack in a planetary gear based on the Volterra series theory. First, the exponential Hilbert reproducing kernel and its fast optimization algorithm was proposed and deduced in theory, and the fast solution of the fourth-order kernel of the Volterra series was successfully solved. Second, the Volterra series model estimation was compared with the least squares estimation of the actual collected signals from the planetary gearbox and the time-domain output signal was estimated using a neural network. The accuracy and the superiority of the Volterra series model of the planetary gearbox were then verified. At the same time, the convergence and the memory length of the Volterra series were discussed. In order to further mine and extract fault feature information, coupling relationship between the generalized frequency response of higher order spectrum of the Volterra series model and fault frequency was also studied. This study attempted to reflect the fault state and fault degree of a crack in a planetary gear from different observation angles and dimensions. Finally, the real condition loading test of a gearbox's comprehensive fault test platform was carried out. The validity of the method of nonlinear system modeling and fault diagnosis of the planetary gearbox, based on the Volterra series theory, was verified, and a new solution has been provided for related research in this field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.