BackgroundKabuki syndrome (KS) is a rare congenital anomaly syndrome affecting multiple organs. Two genes have been shown to be mutated in patients with KS: lysine (K)-specific demethylase 6A (KDM6A) and lysine (K)-specific methyltransferase 2D (KMT2D, formerly MLL2). Although the congenital clinical characteristic is helpful in diagnosis of the KS, there are no reports of specific findings in fetuses that might suggest the syndrome prenatally.Case presentationIn this study, we described a male patient with a novel KDM6A splicing in exon(exon4) and flanking intron(intron3)-exon boundaries characterized by congenital hydrocephalus which had never been reported before. The male patient had inherited the c.335-1G > T splice site mutation from his mother who had fewer dysmorphic features than the patient who displayed a more severe phenotype with multiple organ involvement. Our research suggests that congenital hydrocephalus may accompany KS type 2, which improve the knowledge on KS further more.ConclusionsBased on genetic and clinical features, suggest that the c.335-1G > T splicing mutation in KDM6A causing KS-2 disease. At least for this case, we suggest that congenital hydrocephalus is closely associated with KS type 2.Electronic supplementary materialThe online version of this article (10.1186/s12881-018-0724-4) contains supplementary material, which is available to authorized users.
The aim of this study was to observe the dynamic changes of serum brain-derived neurotrophic factor (BDNF), S-100B, and Tau proteins levels in full-term newborns with hypoxic-ischemic encephalopathy (HIE) and to discuss their significance in brain damage. Serum samples of 28 full-term newborns diagnosed with HIE and 20 controls were obtained in the first 24 h of life. Another serum samples were also taken, respectively, at 3 and 7 days of life in HIE group. The concentrations of BDNF, S-100B, and Tau proteins were measured by the enzyme-linked immunosorbent assay method. Mean concentrations of BDNF, S-100B, and Tau proteins among different time period and in different grades of HIE group were calculated and compared. Compared with the control group, serum BDNF and proteins S-100B levels in HIE group were significantly elevated in 24 h after birth (P< 0.05) and their concentrations were also significantly higher among patients with mod-severe HIE compared to those with mild HIE at 24 h and 7 days after asphyxia (P < 0.05). Regardless of whether mod-severe HIE or mild HIE, there were no significant difference of serum BDNF and proteins S-100B among the three different time periods. There was no difference in Tau protein levels between HIE group and control group, also no difference between mod-severe HIE group and mild HIE group. BDNF and proteins S-100B are up-regulated early in asphyxia neonates with HIE; and the released amount of BDNF and proteins S-100B from nerve center system correlate with the extent of encephalopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.