Seaweeds are essential for marine ecosystems and have immense economic value. Here we present a comprehensive analysis of the draft genome of Saccharina japonica, one of the most economically important seaweeds. The 537-Mb assembled genomic sequence covered 98.5% of the estimated genome, and 18,733 protein-coding genes are predicted and annotated. Gene families related to cell wall synthesis, halogen concentration, development and defence systems were expanded. Functional diversification of the mannuronan C-5-epimerase and haloperoxidase gene families provides insight into the evolutionary adaptation of polysaccharide biosynthesis and iodine antioxidation. Additional sequencing of seven cultivars and nine wild individuals reveal that the genetic diversity within wild populations is greater than among cultivars. All of the cultivars are descendants of a wild S. japonica accession showing limited admixture with S. longissima. This study represents an important advance toward improving yields and economic traits in Saccharina and provides an invaluable resource for plant genome studies.
A broad spectrum of events that come under the category of green tide are recognized world-wide as a response to elevated levels of seawater nutrients in coastal areas. Green tides involve a wide diversity of sites, macroalgal species, consequences, and possible causes. Here we review the effect of natural and maninduced environmental fluctuations on the frequency and apparent spread of green tides. This article highlights the need for interdisciplinary research aimed at shedding light on the basic mechanisms governing the occurrence and succession of green algae in coastal seas. This will result in more effective management and mitigation of the effects of green tides, thus safeguarding the intrinsic and commercial value of coastal marine ecosystems.
The sex-specific molecular marker is a useful gene resource for studying sex- determining mechanisms and controlling fish sex. Artificially produced male and female half-smooth tongue sole (Cynoglossus semilaevis) were used to screen sex-specific amplified fragment length polymorphism (AFLPs) molecular markers. The phenotypic sex of 28 tongue soles was determined by histological sectioning of gonads. The AFLP analysis of 15 females and 13 males via 64 primer combinations produced a total of 4681 scorable bands, of which 42.11% and 43.39% of bands were polymorphic in females and males, respectively. Seven female-specific AFLP markers were identified and designated as CseF382, CseF575, CseF783, CseF464, CseF136, CseF618, and CseF305, respectively. One female-specific AFLP marker (CseF382) was amplified, recovered from the gels, cloned, and sequenced (accession no. DQ487760). This female-specific AFLP marker was converted into a single-locus polymerase-chain reaction (PCR) marker of a sequence-characterized amplified region (SCAR). A simple PCR method of using the specific primers was developed for identifying genetic sex of half-smooth tongue sole. PCR products demonstrated that the initial 15 females produced the female-specific band of about 350 bp, but the initial 13 male individuals failed to produce the band. We also investigated the applicability of the PCR primers in other tongue sole individuals. The same female-specific fragment of about 350 bp was found in the additional 59 female individuals, but not in the additional 58 male individuals. This AFLP-based molecular sexing technique may have great application potential in elucidation of sex determination mechanisms and sex control in half-smooth tongue sole.
Half-smooth tongue sole (Cynoglossus semilaevis) is an important cultured marine fish as well as a promising model fish for the study of sex determination mechanisms. In the present study, a protocol for artificial gynogenesis of half-smooth tongue sole was developed in order to identify the sex determination mechanism and to generate all-female stock. The optimal UV-irradiation dose for genetically inactivating sea perch spermatozoa was determined to be > or =30 mJ/cm(2). The optimal initiation time for cold shock of gynogenetic embryos was determined to be 5 min after fertilization, while the optimal temperature and treatment duration were determined to be 20-25 min at 5 degrees C. Chromosomes from common diploids, gynogenetic haploids, and diploids were analyzed. WW chromosomes were discovered in some of the gynogenetic diploids. The microsatellite marker was applied to analyze gynogenetic diploid fry. Among the 30 gynogenetic diploid fry, 11 fry contained only one allele, while 19 contained two alleles, which had the same genotype as their mother. The female-specific DNA marker was observed in four individuals out of ten gynogenetic diploid fry. Ploidy analysis of 20 putative gynogenetic fry showed them all to be diploid. Thus, a protocol for the induction of artificial gynogenesis has been developed for the first time in half smooth tongue sole, and the sex determination mechanism in the tongue sole was determined to be female heterogametic with the ZW chromosome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.