This paper explores the mechanism of convective heat transfer enhancement in a new perspective. In this paper, a new parameter called heat convection velocity is proposed based on the field synergy principle. It is defined as the velocity projection on the temperature gradient vector and reflects the magnitude of the velocity component that contributes to heat convection. Three typical cases are taken into consideration to investigate the influence factors of Nusselt number theoretically. The results indicate that the Nusselt number can be enhanced by increasing the mean heat convection velocity and the dimensionless mean temperature difference. Through theoretical analysis, three suggestions are found for designing heat transfer enhancement components: (a) the overall synergetic effect should be improved; (b) the fluid with lower temperature gradient should be guided to the region where the temperature gradient is higher; (c) temperature distribution should be an interphase distribution of hot and cold fluid. Besides, the heat convection velocity is used to investigate the mechanism of convective heat transfer in the smooth tube. It is found that the increase of Nusselt number is due to the increase of heat convection velocity. In addition, according to design suggestions, a new insert is invented and inserted in the circular tube. With heat convection velocity analysis, it is found that there is much potential of increasing heat convection velocity for enhancing the convective heat transfer in the circular tube.
The process of heat exchange between two fluids of different temperatures and separated by a solid wall occurs in many engineering applications. Log mean temperature difference and effectiveness-NTU methods are widely used to assist in the design of heat exchangers. However, the two methods focus on overall analysis and cannot show the local temperature distributions. This paper obtains the mathematical solutions to the temperature profiles in an ideal counterflow heat exchanger. The aim of this research is to explain the phenomenon called the “entropy generation paradox”, which indicates a discrepancy between effectiveness and optimal entropy generation. The theoretical analysis reveals that the temperature curves are exponential functions when the heat capacity rates of the two streams are different; otherwise, the curves are linear functions. A heat exchanger is demonstrated to draw the temperature profiles under different working conditions. Local entropy generation rates are determined by the ratio of local stream temperatures in the form of a hook function. To realize a certain heat duty, there are many stream flow rate couples, and each couple results in a different entropy generation profile and obtains a corresponding total entropy generation. The helical steam generator of a high-temperature gas-cooled reactor is analyzed in this article and the principle of equipartition of entropy generation is confirmed. This principle indicates that, among the many working conditions to achieve a certain heat duty, a heat exchanger characterized by a nearly constant entropy production gives the best second law efficiency possible in order to achieve the best energy conversion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.