Manganese superoxide dismutase promotes migration and invasion in lung cancer cells via upregulation of the transcription factor forkhead box M1. Here, we assessed whether upregulation of forkhead box M1 by manganese superoxide dismutase overexpression mediates the acquisition of cancer stem-like cell characteristics in non-small cell lung cancer H460 cells. The second-generation spheroids from H460 cells were used as lung cancer stem-like cells. The levels of manganese superoxide dismutase, forkhead box M1, stemness markers (CD133, CD44, and ALDH1), and transcription factors (Bmi1, Nanog, and Sox2) were analyzed by Western blot. Sphere formation in vitro and carcinogenicity of lung cancer stem-like cells were evaluated by spheroid formation assay and limited dilution xenograft assays. Knockdown or overexpression of manganese superoxide dismutase or/and forkhead box M1 by transduction with short hairpin RNA(shRNA) or complementary DNA were performed for mechanistic studies. We showed that manganese superoxide dismutase and forkhead box M1 amounts as well as the expression levels of stemness markers and transcription factors sphere formation in vitro, and carcinogenicity of lung cancer stem-like cells were higher than in monolayer cells. Lung cancer stem-like cells transduced with manganese superoxide dismutase shRNA or FoxM1 shRNA exhibited decreased sphere formation and lower amounts of stemness markers and transcription factors. Overexpression of manganese superoxide dismutase or FoxM1 in H460 cells resulted in elevated sphere formation rates and protein levels of stemness markers and transcription factors. Meanwhile, manganese superoxide dismutase knockdown or overexpression accordingly altered forkhead box M1 levels. However, forkhead box M1 knockdown or overexpression had no effect on manganese superoxide dismutase levels but inhibited or promoted lung cancer stem-like cell functions. Interestingly, forkhead box M1 overexpression alleviated the inhibitory effects of manganese superoxide dismutase knockdown in lung cancer stem-like cells. In a panel of non-small cell lung cancer cells, including H441, H1299, and H358 cells, compared to the respective monolayer counterparts, the expression levels of manganese superoxide dismutase and forkhead box M1 were elevated in the corresponding spheroids. These findings revealed the role of forkhead box M1 upregulation by manganese superoxide dismutase overexpression in maintaining lung cancer stem-like cell properties. Therefore, inhibition of forkhead box M1 upregulation by manganese superoxide dismutase overexpression may represent an effective therapeutic strategy for non-small cell lung cancer.
LCT is a useful and easily performed technique that can be widely applied, and is suitable for mass screening for the early diagnosis of lung cancer.
Manganese superoxide dismutase (MnSOD) promotes invasive and migratory activities by upregulating Forkhead box protein M1 (FoxM1) expression. The present study investigated whether modulation of MnSOD and FoxM1 expression was responsible for the antitumor effects of genistein on cancer stem-like cells (CSLCs) derived from non-small cell lung cancer cells (NSCLCs). Spheroids prepared from H460 or A549 cells were defined as lung cancer stem-like cells (LCSLCs) and were treated with genistein. The Cell Counting Kit-8 assay was performed to assess human lung fibroblast IMR-90 cell proliferation, as well as NSCLC H460 and A549 cell proliferation following treatment with genistein. MnSOD, FoxM1, cluster of differentiation (CD)133, CD44, BMI1 proto-oncogene, polycomb ring finger (Bmi1) and Nanog homeobox (Nanog) protein expression levels were examined via western blotting. The sphere formation assay was conducted to evaluate LCSLC self-renewal potential, and LSCLC migratory and invasive activities were analyzed using the wound healing and Transwell invasion assays, respectively. Knockdown and overexpression of MnSOD and FOXM1 via short hairpin-RNA or cDNA transfection were performed. The results indicated that genistein (80 and 100 µM) suppressed H460 and A549 cell viability compared with IMR-90 cells. Sub-cytotoxic concentrations of genistein (20 and 40 µM) inhibited sphere formation activity and decreased the protein expression levels of CD133, CD44, Bmi1 and Nanog in LCSLCs compared with the control group. Genistein also suppressed the migratory and invasive activities of LCSLCs compared with the control group. MnSOD and FoxM1 overexpression antagonized the effects of genistein (40 µM), whereas MnSOD and FoxM1 knockdown enhanced the inhibitory effects of genistein (20 µM) on CSLC characteristics of LCSLCs. Overall, the results suggested that genistein suppressed lung cancer cell CSLC characteristics by modulating MnSOD and FoxM1 expression levels.
The association between the expression of excision repair cross‑complementing gene 1 (ERCC1), thymidylate synthase (TYMS), ribonuleotide reductase M1 (RRM1), βIII‑tubulin (TUBB3), non‑muscle myosin II, myoglobin and MyoD1 in metastatic lung adenocarcinoma, and clinical outcomes with platinum‑based chemotherapy treatment is not well‑established. Recently, increasing attention has been focused on the involvement of ERCC1, TYMS, RRM1 and TUBB3 in the development of drug resistance. There has been less research into the role of muscle myosin II, myoglobin and MyoD1 in the pathogenesis of lung cancer, although these genes are known to have important functions within tumor cells. In the current study, malignant pleural effusion from 116 patients with untreated lung adenocarcinoma diagnosed between 2011 and 2012, were collected. The protein expression levels of ERCC1, TYMS, RRM1 and TUBB3 were evaluated with immunocytochemistry and western blot analysis. The expression levels of non‑muscle myosin II, myoglobin and MyoD1 were measured in a subset of 50 patients, treated with platinum‑based chemotherapy. The association of each of these seven factors with one another, as well as with patient survival were analyzed. Immunohistochemistry demonstrated that the percentage of pleural fluid samples from patients with lung adenocarcinoma expressing ERCC1, TYMS, RRM1 and TUBB3 was 37, 36.2, 82.7 and 69.8%, respectively. In the subset of 50 patients in whom the remaining factors were analyzed, the percentage expressing non‑muscle myosin II was 48%, for myoglobin the figure was 40% and for MyoD1 it was 38%. There was a positive correlation between each pair of the above seven molecules with the exception of TYMS and RRM1. Expression of ERCC1, TYMS, TUBB3, non‑muscle myosin II, myoglobin and MyoD1 genes was associated with decreased survival in patients with metastatic lung adenocarcinoma. Expression of ERCC1, TYMS, TUBB3, non‑muscle myosin II, myoglobin and MyoD1 was also associated with decreased survival rates of patients with lung adenocarcinoma treated with platinum‑based chemotherapy. These factors may be used as clinical biomarkers to predict the biological behavior and chemoresistance of tumor cells, and the survival of patients with lung carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.