As is an excellent bio-based polymer material, poly(lactic acid) (PLA)’s brittle nature greatly restricts its extensive applications. Herein, poly(butylene succinate) (PBS) was introduced to toughening PLA by melt blending using a self-made triple screw extruder through in situ reactive with ethylene-methyl acrylate-glycidyl methacrylate (EGMA). The effect of EGMA concentrations on the mechanical properties, morphology, interfacial compatibility of PLA/PBS blends were studied. Fourier transform infrared (FT-IR) results demonstrated that the epoxy group of EGMA reacts with the hydroxyl groups of PLA and PBS, which proved the occurrence of interfacial reactions among the tri-component. The significantly improved compatibility between PLA and PBS after EGMA incorporation was made evident by scanning electron microscope (SEM) characterization results. Meanwhile, the contact angle test predicted that the EGMA was selectively localized at the interface between PLA and PBS, and the result was verified by morphological analysis of cryofracture and etched samples. The EGMA improves the compatibility of PLA/PBS blends, and consequently leads to a significantly increased toughness with the elongation at break occurring 83 times more when 10 wt % EGMA was introduced than neat PLA, while impact strength also enhanced by twentyfold. Ultimately, the toughening mechanism of PLA based polymers was established based on the above analysis, exploring a new way for the extensive application for degradable material.
In this study, the in-situ compatibilization reaction between recycled acrylonitrile–butadiene–styrene copolymer (rABS) and functional styrene–ethylene–butylene–styrene block maleic anhydride (SEBS-g-MAH) was confirmed, which contributed to the toughening phenomenon of rABS, especially the notched impact strength. As mechanical test that manifested, the rABS/SEBS-g-MAH blends are stronger and more ductile than the rABS/SEBS blends. Prominently, the former has great advantage over the latter in terms of improving the impact performance. Scanning electron microscope (SEM) images showed that the compatible segments that were generated by reaction not only improve the interface adhesion of rABS/SEBS-g-MAH blends but also promote the evolution of co-continuous structures, which can be evidently observed after etching. Furthermore, the SEM micrographs of tensile fracture surfaces indicated that the formation of the co-continuous phase and the improvement of interface adhesion are the most profound reasons for the excellent tensile properties of the rABS/SEBS-g-MAH blends. The impact fracture surface revealed that two-phase interface affects crack propagation and shear yielding absorbs more impact energy than simple interface debonding does at higher deformation rates. Meanwhile, rheological analysis demonstrated that the complex viscosity of the rABS/SEBS-g-MAH (80/20 wt%) blend with a co-continuous structure exhibits a maximum positive deviation at low frequencies from the theoretical value calculated using the rule of logarithmic sum, which indicated a connection between co-continuous structure and complex viscosity. In addition, the storage modulus vs. loss modulus curves of the blends revealed that the viscoelastic behavior of rABS/SEBS-g-MAH blends is very similar to that of rABS.
Morphology control of polymer alloys is an attractive topic for investigators due to its ability to improve the performance of products for years. However, it is hard to control the morphology of immiscible polymer blends during melt processing. Herein, we studied the morphology evolution of poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) with the inclusion of ethylene‐methyl acrylate‐glycidyl methacrylate (EGMA). Scanning electron microscopy of both cryo‐fractured and etched cryo‐fractured samples indicates that the in situ reaction among PLA, PBS, and EGMA can induce the morphology change and result in a novel 3D star‐like structure. Rheology behaviors of the samples under different angular frequencies were used to validate the formation of 3D networks in the samples. Tensile stiffness reinforcements at both room temperature and high temperature were provided through dynamic mechanical analysis. In addition, a 10‐fold improvement in impact strength is also monitored by the unnotched impact test to indicate the superior toughening effect. Furthermore, the crystalline behavior and thermal properties of the blends were also studied. It is believed that our work not only gives a deeper understanding of the reaction‐induced morphology evolution of the PLA/PBS/EGMA blends but also reveals an avenue toward morphology control by melt processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.