This paper presents experimental assessment of the effect of the ratio of vertical to horizontal peak ground acceleration (RVH) on underground metro station. An atrium-style metro station embedded in artificial soil subjected to earthquake loading is examined through shaking table tests. The experimental results for three different RVH, including soil acceleration, soil-structure acceleration difference, dynamic soil normal stress (DSNS), and structural dynamic strain, are presented and the results are compared with the case of horizontal-only excitation. It is found that for an atrium-style metro station, the differences in horizontal acceleration amplitude between the structure and the adjacent soil rise with increasing RVH, which are different at different depths. The most significant differences occur at the depth of the ceiling slab. It is also observed that both the amplitude and distribution of peak DSNS have obvious differences between the left and right side walls at all levels. It is therefore concluded that the RVH has a significant influence on dynamic soil-structure interaction. It is believed that under extreme earthquake loading, such as near fault zones, RVH is a parameter of paramount importance and should be accounted for in the seismic analyses and seismic performance assessments of underground structures, especially for those with zero or near-zero buried depth, such as atrium-style metro stations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.