BackgroundIn plants, microRNAs (miRNAs) are endogenous ~22 nt RNAs that play important regulatory roles in many aspects of plant biology, including metabolism, hormone response, epigenetic control of transposable elements, and stress response. Extensive studies of miRNAs have been performed in model plants such as rice and Arabidopsis thaliana. In maize, most miRNAs and their target genes were analyzed and identified by clearly different treatments, such as response to low nitrate, salt and drought stress. However, little is known about miRNAs involved in maize ear development. The objective of this study is to identify conserved and novel miRNAs and their target genes by combined small RNA and degradome sequencing at four inflorescence developmental stages.ResultsWe used deep-sequencing, miRNA microarray assays and computational methods to identify, profile, and describe conserved and non-conserved miRNAs at four ear developmental stages, which resulted in identification of 22 conserved and 21-maize-specific miRNA families together with their corresponding miRNA*. Comparison of miRNA expression in these developmental stages revealed 18 differentially expressed miRNA families. Finally, a total of 141 genes (251 transcripts) targeted by 102 small RNAs including 98 miRNAs and 4 ta-siRNAs were identified by genomic-scale high-throughput sequencing of miRNA cleaved mRNAs. Moreover, the differentially expressed miRNAs-mediated pathways that regulate the development of ears were discussed.ConclusionsThis study confirmed 22 conserved miRNA families and discovered 26 novel miRNAs in maize. Moreover, we identified 141 target genes of known and new miRNAs and ta-siRNAs. Of these, 72 genes (117 transcripts) targeted by 62 differentially expressed miRNAs may attribute to the development of maize ears. Identification and characterization of these important classes of regulatory genes in maize may improve our understanding of molecular mechanisms controlling ear development.
BackgroundMicroRNAs (miRNAs) are endogenous, small non-coding RNAs that play important roles in multiple biological processes. MiR-20b has been reported to participate in breast cancer tumorigenic progression, however, the functional roles are still unclear and under debating. The aim of this study is to explicit the molecular mechanism of miR-20b underlying breast cancer tumorigenesis.ResultsIn the present study, we showed that miR-20b was overexpressed in human breast cancer tissues and cell lines compared with paired adjacent normal tissues and normal cell lines, respectively. We identified PTEN, a well-known tumor suppressor, as the functional downstream target of miR-20b. Luciferase assays confirmed that miR-20b could directly bind to the 3′ untranslated region(UTR) of PTEN and suppress translation. Alteration of miR-20b expression changed PTEN protein level but not mRNA expression in ZR-75-30 and MCF-7 breast cancer cells, suggesting miR-20b regulates PTEN gene expression at the posttranscriptional level. Furthermore, upregulation of miR-20b significantly promoted the proliferation, colony formation and DNA synthesis of ZR-75-30 and MCF-7 breast cancer cells. Conversely, knockdown of miR-20b expression inhibited the growth of breast cancer cells in vitro and in vivo.ConclusionDysregulation of miR-20b plays critical roles in the breast cancer tumorigenesis, at least in part via targeting the tumor suppressor PTEN. This microRNA may serve as a potential diagnostic marker and therapeutic target for breast cancer.Electronic supplementary materialThe online version of this article (doi:10.1186/2045-3701-4-62) contains supplementary material, which is available to authorized users.
Long-term continuous soybean cropping can lead to the aggravation of soil fungal disease. However, the manner in which the fungal community and functional groups of fungi are affected by continuous soybean cropping remains unclear. We investigated the fungal abundance, composition and diversity during soybean rotation (RS), 2-year (SS) and long-term (CS) continuous soybean cropping systems using quantitative real-time PCR and high-throughput sequencing. The results showed that the fungal abundance was significantly higher in CS than in SS and RS. CS altered the fungal composition. Compared with RS, SS had an increase of 29 and a decrease of 12 genera in fungal relative abundance, and CS increased 38 and decreased 17 genera. The Shannon index was significantly higher in CS and SS than in RS. The result of principal coordinate analysis (PCoA) showed that CS and SS grouped together and were clearly separated from RS on the PCoA1. A total of 32 features accounted for the differences in fungal composition across RS, SS, and CS. The relative abundance of 10 potentially pathogenic and 10 potentially beneficial fungi changed, and most of their relative abundances dramatically increased in SS and CS compared with RS. Our study indicated that CS results in selective stress on pathogenic and beneficial fungi and causes the development of the fungal community structure that is antagonistic to plant health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.