Motivation: Prior biological knowledge greatly facilitates the meaningful interpretation of gene-expression data. Causal networks constructed from individual relationships curated from the literature are particularly suited for this task, since they create mechanistic hypotheses that explain the expression changes observed in datasets.Results: We present and discuss a suite of algorithms and tools for inferring and scoring regulator networks upstream of gene-expression data based on a large-scale causal network derived from the Ingenuity Knowledge Base. We extend the method to predict downstream effects on biological functions and diseases and demonstrate the validity of our approach by applying it to example datasets.Availability: The causal analytics tools ‘Upstream Regulator Analysis', ‘Mechanistic Networks', ‘Causal Network Analysis' and ‘Downstream Effects Analysis' are implemented and available within Ingenuity Pathway Analysis (IPA, http://www.ingenuity.com).Supplementary information:
Supplementary material is available at Bioinformatics online.
Cyclin B is degraded at the onset of anaphase by a ubiquitin-dependent proteolytic system. We have fractionated mitotic Xenopus egg extracts to identify components required for this process. We find that UBC4 and at least one other ubiquitin-conjugating enzyme can support cyclin B ubiquitination. The mitotic specificity of cyclin ubiquitination is determined by a 20S complex that contains homologs of budding yeast CDC16 and CDC27. Because these proteins are required for anaphase in yeast and mammalian cells, we refer to this complex as the anaphase-promoting complex (APC). CDC27 antibodies deplete APC activity, while immunopurified CDC27 complexes are sufficient to complement either interphase extracts or a mixture of recombinant UBC4 and the ubiquitin-activating enzyme E1. These results suggest that APC functions as a regulated ubiquitin-protein ligase that targets cyclin B for destruction in mitosis.
Ubiquitin-mediated proteolysis is the key to cell cycle control. Anaphase-promoting complex/cyclosome (APC) is a ubiquitin ligase that targets cyclin B and factors regulating sister chromatid separation for proteolysis by the proteasome and, consequently, regulates metaphase-anaphase transition and exit from mitosis. Here we report that Cdc2-cyclin B-activated Polo-like kinase (Plk) specifically phosphorylates at least three components of APC and activates APC to ubiquitinate cyclin B in the in vitro-reconstituted system. Conversely, protein kinase A (PKA) phosphorylates two subunits of APC but suppresses APC activity. PKA is superior to Plk in its regulation of APC, and Plk activity peaks whereas PKA activity is falling at metaphase. These results indicate that Plk and PKA regulate mitosis progression by controlling APC activity.
We have isolated cDNAs and raised antibodies corresponding to the human homologs of the S. cerevisiae CDC27 and CDC16 proteins, which are tetratrico peptide repeat (TPR)-containing proteins essential for mitosis in budding yeast. We find that the CDC27Hs and CDC16Hs proteins colocalize to the centrosome at all stages of the mammalian cell cycle, and to the mitotic spindle. Injection of affinity-purified anti-CDC27Hs antibodies into logarithmically growing HeLa cells causes a highly reproducible cell cycle arrest in metaphase with apparently normal spindle structure. We conclude that CDC27 and CDC16 are evolutionarily conserved components of the centrosome and mitotic spindle that control the onset of postmetaphase events during mitosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.