SUMMARY The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimer’s disease (LOAD), we constructed gene regulatory networks in 1647 post-mortem brain tissues from LOAD patients and non-demented subjects, and demonstrate that LOAD reconfigures specific portions of the molecular interaction structure. Through an integrative network-based approach, we rank-ordered these network structures for relevance to LOAD pathology, highlighting an immune and microglia-specific module dominated by genes involved in pathogen phagocytosis, containing TYROBP as a key regulator and up-regulated in LOAD. Mouse microglia cells over-expressing intact or truncated TYROBP revealed expression changes that significantly overlapped the human brain TYROBP network. Thus the causal network structure is a useful predictor of response to gene perturbations and presents a novel framework to test models of disease mechanisms underlying LOAD.
Treating messenger RNA transcript abundances as quantitative traits and mapping gene expression quantitative trait loci for these traits has been pursued in gene-specific ways. Transcript abundances often serve as a surrogate for classical quantitative traits in that the levels of expression are significantly correlated with the classical traits across members of a segregating population. The correlation structure between transcript abundances and classical traits has been used to identify susceptibility loci for complex diseases such as diabetes and allergic asthma. One study recently completed the first comprehensive dissection of transcriptional regulation in budding yeast, giving a detailed glimpse of a genome-wide survey of the genetics of gene expression. Unlike classical quantitative traits, which often represent gross clinical measurements that may be far removed from the biological processes giving rise to them, the genetic linkages associated with transcript abundance affords a closer look at cellular biochemical processes. Here we describe comprehensive genetic screens of mouse, plant and human transcriptomes by considering gene expression values as quantitative traits. We identify a gene expression pattern strongly associated with obesity in a murine cross, and observe two distinct obesity subtypes. Furthermore, we find that these obesity subtypes are under the control of different loci.
Common human diseases result from the interplay of many genes and environmental factors. Therefore, a more integrative biology approach is needed to unravel the complexity and causes of such diseases. To elucidate the complexity of common human diseases such as obesity, we have analysed the expression of 23,720 transcripts in large population-based blood and adipose tissue cohorts comprehensively assessed for various phenotypes, including traits related to clinical obesity. In contrast to the blood expression profiles, we observed a marked correlation between gene expression in adipose tissue and obesity-related traits. Genome-wide linkage and association mapping revealed a highly significant genetic component to gene expression traits, including a strong genetic effect of proximal (cis) signals, with 50% of the cis signals overlapping between the two tissues profiled. Here we demonstrate an extensive transcriptional network constructed from the human adipose data that exhibits significant overlap with similar network modules constructed from mouse adipose data. A core network module in humans and mice was identified that is enriched for genes involved in the inflammatory and immune response and has been found to be causally associated to obesity-related traits.
A key goal of biomedical research is to elucidate the complex network of gene interactions underlying complex traits such as common human diseases. Here we detail a multistep procedure for identifying potential key drivers of complex traits that integrates DNA-variation and gene-expression data with other complex trait data in segregating mouse populations. Ordering gene expression traits relative to one another and relative to other complex traits is achieved by systematically testing whether variations in DNA that lead to variations in relative transcript abundances statistically support an independent, causative or reactive function relative to the complex traits under consideration. We show that this approach can predict transcriptional responses to single gene-perturbation experiments using gene-expression data in the context of a segregating mouse population. We also demonstrate the utility of this approach by identifying and experimentally validating the involvement of three new genes in susceptibility to obesity.In the past few years, gene-expression microarrays and other general molecular profiling technologies have been applied to a wide range of biological problems and have contributed to discoveries about the complex network of biochemical processes underlying living Correspondence should be addressed to E.E.S. (eric_schadt@merck.com). Note: Supplementary information is available on the Nature Genetics website. COMPETING INTERESTS STATEMENTThe authors declare that they have no competing financial interests. NIH Public Access Author ManuscriptNat Genet. Author manuscript; available in PMC 2010 March 18. Published in final edited form as:Nat Genet. 2005 July ; 37(7): 710-717. doi:10.1038/ng1589. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript systems 1 , common human diseases 2,3 and gene discovery and structure determination [4][5][6] . Microarrays have also helped to identify biomarkers 7 , disease subtypes 3,8,9 and mechanisms of toxicity 10 and, more recently, to elucidate the genetics of gene expression in human populations 11,12 and to reconstruct gene networks by integrating gene-expression and genetic data 13 . The use of molecular profiling technologies as tools to identify genes underlying common, polygenic diseases has been less successful. Hundreds or even thousands of genes whose expression changes are associated with disease traits have been identified, but determining which of the genes cause disease rather than respond to the disease state has proven difficult.Microarray data have recently been combined with other experimental approaches to facilitate identification of key mechanistic drivers of complex traits 3,[13][14][15][16][17] . One such technique involves treating relative transcript abundances as quantitative traits in segregating populations. In this method, chromosomal regions that control the level of expression of a particular gene are mapped as expression quantitative trait loci (eQTLs). Gene-expression QTLs that contain the gene encoding t...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.