A series of 2-(N-arylsulfonylindol-3-yl)-3-aryl-1,3-thiazinan-4-one derivatives were synthesized and evaluated in vitro against seven phytopathogenic fungi, namely Fusarium graminearum, Alternaria solani, Fusarium oxysporium f. sp. vasinfectum, Alternaria brassicae, Valsa mali, Alternaria alternata, and Pyricularia oryzae. Among all derivatives, especially compound 4j exhibited a potential antifungal activity against four phytopathogenic fungi.
A half-critical weight-average molecular weight ( M ¯ w ) (approximately 21,000 g mol−1), high-ion-content Zn-salt poly(styrene–ran–cinnamic-acid) (SCA–Zn) ionomer was successfully synthesized by styrene–cinnamic-acid (10.8 mol %) copolymerization followed by excess-ZnO melt neutralization. At 220 °C, the SCA–Zn’s viscosity was only approximately 1.5 magnitude orders higher than that of commercial polystyrene (PS) at 102 s−1, and the PS/SCA–Zn (5–40 wt %) melt blends showed apparently fine, two-phased morphologies with blurred interfaces, of which the 95/5 and 90/10 demonstrated Han plots suggesting their near miscibility. These indicate that any PS–(SCA–Zn) processability mismatch was minimized by the SCA–Zn’s half-critical M ¯ w despite its dense ionic cross-links. Meanwhile, the SCA–Zn’s Vicat softening temperature (VST) was maximized by its cross-linking toward 153.1 °C, from that (97.7 °C) of PS, based on its half-critical M ¯ w at which the ultimate glass-transition temperature was approximated. Below approximately 110 °C, the PS/SCA–Zn (0–20 wt %) were seemingly miscible when their VST increased linearly yet slightly with the SCA–Zn fraction due to the dissolution of the SCA–Zn’s cross-links. Nevertheless, the 60/40 blend’s VST significantly diverged positively from the linearity until 111.1 °C, revealing its phase-separated morphology that effectively enhanced the heat resistance by the highly cross-linked SCA–Zn. This work proposes a methodology of improving PS heat resistance by melt blending with its half-critical M ¯ w , high-ion-content ionomer.
Polymethylacrylic acid beads were utilized as polymer-supported buffer agents for the pH control of neutral aqueous solutions to reduce phosphorus effluents from phosphate buffers. The agents were used to buffer the pH of ureasecatalyzed reactions in a neutral PH region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.