Abstract. Inspired by the success of deep neural network (DNN) models in solving challenging visual problems, this paper studies the task of Chinese Image Character Recognition (ChnICR) by leveraging DNN model and huge machine simulated training samples. To generate the samples, clean machine born Chinese characters are extracted and are plus with common variations of image characters such as changes in size, font, boldness, shift and complex backgrounds, which in total produces over 28 million character images, covering the vast majority of occurrences of Chinese character in real life images. Based on these samples, a DNN training procedure is employed to learn the appropriate Chinese character recognizer, where the width and depth of DNN, and the volume of samples are empirically discussed. Parallel to this, a holistic Chinese image text recognition system is developed. Encouraging experimental results on text from 13 TV channels demonstrate the effectiveness of the learned recognizer, from which significant performance gains are observed compared to the baseline system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.