Space heating accounts for a large part of building energy consumption. Lowering the heating temperature set-point (Tsp) is expected to be a feasible approach for energy efficiency. In this paper, eight globally typical cities are selected, and the energy-saving mechanism and variation trends of lowering heating Tsp are investigated under different working conditions (climate conditions, construction completion year and inner heat sources). The results show that significant energy-saving effects even appear in the relatively warm-winter cities. The energy-saving mechanism is dominated by two different categories of heating hours including the temperature-difference saving (TDS) hours and the behavioral saving (BS) hours. The contribution of TDS and BS to the whole annual heating energy saving amount (HSA) depends on the reducing level of heating hours. The HSA of lowing Tsp is mainly affected by TDS influence. After coupling the consideration of different factors, with the decreasing annual HSA of buildings, the dominance of the TDS influence mechanism shrinks gradually while the annual heating energy saving ratio (HSR) increases. This work provides the analysis method for building heating energy saving potential evaluation and reference for the establishment of standards and residents’ behavioral energy saving in different climatic zones.
Windows have a great impact on building energy consumption, and the thermal performance of window frames directly affects its energy-saving potential. In this paper, a novel method is proposed to optimize the thermal performance of commercially available broken-bridge aluminum window frames, by incorporating radiant insulation panels (RIPs) into the window frame cavity. A typical aluminum alloy window frame heat transfer model is theoretically analyzed and validated, and the effects of key design parameters on the equivalent thermal conductivity (ETC) of the cavity radiation heat transfer and the heat transfer coefficient (U-factor) of window frames are quantitatively analyzed by a finite element simulation method using the THERM software. Moreover, the RIP, the insulation material filling, and low surface emissivity on the thermal performance of the window frame are compared and analyzed. The results show that the RIP is better placed in the middle, the width and quantity of RIPs are negatively correlated with the U-factor, while the surface emissivity of RIPs is positively correlated with the U-factor. Adding RIPs in the cavity can reduce the U-factor of the window frame by more than 7.43%, slightly lower than 8.97% for the filling type, but significantly higher than 0.81% for the low-emissivity type. Inserting RIPs is a simple and effective way to reduce the U-factor of the window frame and have a great potential of use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.