Tau is a microtubule associated protein that is found primarily in neurons, and in pathological conditions such as Alzheimer disease (AD) it accumulates and contributes to the disease process. Since tau plays a fundamental role in the pathogenesis of AD and other tauopathies, and in AD mouse models reducing tau levels improves outcomes, approaches that facilitate tau clearance are being considered as therapeutic strategies. However, fundamental to the development of such interventions is a clearer understanding of the mechanisms that regulate tau clearance. Here we report a novel mechanism of tau degradation mediated by the co-chaperone BAG3. BAG3 has been shown to be an essential component of a complex that targets substrates to the autophagy pathway for degradation. In rat primary neurons, activation of autophagy by inhibition of proteasome activity or treatment with trehalose resulted in significant decreases in tau and phospho-tau levels. These treatments also induced an upregulation of BAG3. Proteasome inhibition activated JNK, which was responsible for the upregulation of BAG3 and increased tau clearance. Inhibiting JNK or knocking down BAG3 blocked the proteasome inhibition-induced decreases in tau. Further, BAG3 overexpression alone resulted in significant decreases in tau and phospho-tau levels in neurons. These results indicate that BAG3 plays a critical role in regulating the levels of tau in neurons, and interventions that increase BAG3 levels could provide a therapeutic approach in the treatment of AD.
Glial cell line-derived neurotrophic factor (GDNF) and its receptor GFRα1 have been implicated in the survival of ventral midbrain dopaminergic (DA) neurons, but the molecular mechanisms bywhich GDNF generates DA neurons in grafted midbrain-derived neural stem cells (mNSCs) are not understood. Midbrain-derived neural stem cells isolated from rat embryonic mesencephalon (embryonic day 12) were treated with GDNF or in combination with GFRα1 small interfering RNA. Reverse transcription-polymerase chain reaction, Western blot, and immunocytochemistry were used totest the expression of the orphan nuclear receptor Nurr1 and thetranscription factor Pitx3 and newborn tyrosine hydroxylase (TH)-positive cells. Treatment of mNSCs with GDNF increased mNSCs' sphere diameter, reduced expression of caspase 3, and increased expression of Bcl-2. Glial cell line-derived neurotrophic factor-treated mNSCs enhanced Nurr1 and Pitx3 expression and the fraction of TH-, TH/Pitx3-, and TH/Nurr1-positive cells in culture. Grafted GDNF-treated mNSCs significantly decreased apomorphine-induced rotation behavior in 6-hydroxydopamine-lesioned rats. Glialcell line-derived neurotrophic factor-treated mNSCs showed increased numbers of TH/Pitx3- and TH/Nurr1-postivie cells. The effect elicited by GDNF was inhibited by small interfering RNA-mediated knockdown of GFRα1. Our data demonstrate the contribution of GDNF to DA neuron development and may also elucidate pathogenetic mechanisms in Parkinson disease and contribute to the development of novel therapies for the disorder.
Mutations in α-synuclein gene have been linked to familial early-onset Parkinson’s disease (PD) with Lewy body pathology. A30P mutant α-synuclein is believed to suppress autophagic progression associated with PD pathogenesis. However, the mechanistic link between A30P mutation and autophagy inhibition in PD remains poorly understood. In this study, we identified that A30P mutant α-synuclein resulted in reduced autophagy flux through promoting the decrease of autophagosomal membrane-associated protein LC3 and the increase of SQSTM1/p62 protein levels in midbrain dopaminergic neuron, due to the transcriptional repressor ZKSCAN3 trafficking from the cytoplasm to the nucleus. Moreover, the results demonstrated that A30P mutant α-synuclein not only decreased the phospho-c-Jun N-terminal Kinase (p-JNK) levels in midbrain dopaminergic neuron but also interfered autophagy without influencing the activities of AMPK and mTOR. Collectively, the present study reveals a novel autophagy inhibition mechanism induced by A30P mutant α-synuclein via transcriptional activation of the ZKSCAN3 in a JNK-dependent manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.