Melatonin is an indoleamine synthesized in the pineal gland that shows a wide range of physiological and pharmacological functions, including anticancer effects. In this study, we investigated the effect of melatonin on drug-induced cellular apoptosis against the cultured human lung adenocarcinoma cells and explored the role of histone deacetylase (HDAC) signaling in this process. The results showed that melatonin treatment led to a dose- and time-dependent decrease in the viability of human A549 and PC9 lung adenocarcinoma cells. Additionally, melatonin exhibited potent anticancer activity in vitro, as evidenced by reductions of the cell adhesion, migration, and the intracellular glutathione (GSH) level and increases in the apoptotic index, caspase 3 activity, and reactive oxygen species (ROS) in A549 and PC9 cells. Melatonin treatment also influenced the expression of HDAC-related molecules (HDAC1 and Ac-histone H3), upregulated the apoptosis-related molecules (PUMA and Bax), and downregulated the proliferation-related molecule (PCNA) and the anti-apoptosis-related molecule (Bcl2). Furthermore, the inhibition of HDAC signaling using HDAC1 siRNA or SAHA (a potent pan-inhibitor of HDACs) sensitized A549 and PC9 cells to the melatonin treatment. In summary, these data indicate that in vitro-administered melatonin is a potential suppressor of lung adenocarcinoma cells by the targeting of HDAC signaling and suggest that melatonin in combination with HDAC inhibitors may be a novel therapeutic intervention for human lung adenocarcinoma.
Endogenous direct-current electric fields (dcEFs) occur in vivo in the form of epithelial transcellular potentials or neuronal field potentials. A variety of cells respond to dcEFs by migrating directionally, and this is termed galvanotaxis. The mechanism by which dcEFs direct cell movement, however, is not yet understood, and the effects on lung cancer cells are entirely unknown. We demonstrated that cultured human lung adenocarcinoma A549 cells migrate toward the cathode in applied dcEFs at 3 V/cm. Fluorescence microscopy showed that both epidermal growth factor receptors (EGFRs) and F-actin are polarized to the cathode. EGFR inhibitors, cetuximab and AG1478, reduced the migration rate and directed motility in dcEFs. Western blots showed that ERK and AKT signaling pathways were prominently promoted by dcEFs. EGFR inhibitors could reduce this promotion but not completely. These data suggest that polarization of EGFRs and the activation of their downstream signals play an important role in the galvanotaxis of A549 cells in dcEFs.
Protein arginine methyltransferase 5 (PRMT5) functions as a tumor initiator to regulate several cancer progressions, such as proliferation and apoptosis, by catalyzing the symmetrical dimethylation (me2s) of arginine residues within targeted molecules. However, the exact role of PRMT5-mediated metastasis in lung cancer is not fully understood. Here, we illustrated its potential effects in lung cancer metastasis in vivo and vitro. PRMT5 was frequently overexpressed in lung tumors, and its expression was positively related to tumor stages, lymphatic metastasis and poor outcome. In this model, PRMT5 repressed the transcription of the miR-99 family by symmetrical dimethylation of histone H4R3, which increased FGFR3 expression and in turn activated Erk1/2 and Akt, leading to cell growth and metastasis in lung cancer. Furthermore, loss of PRMT5 exerted anti-metastasis effects on lung cancer progression by blocking histone-modification of miR-99 family. Overall, this study provides new insights into the PRMT5/miR-99 family/FGFR3 axis in regulating lung cancer progression and identifies PRMT5 as a promising prognostic biomarker and therapeutic target.
The Crosstalk between a tumor and its hypoxic microenvironment has become increasingly important. However, the exact role of UCP2 function in cancer cells under hypoxia remains unknown. In this study, UCP2 showed anti-apoptotic properties in A549 cells under hypoxic conditions. Over-expression of UCP2 in A549 cells inhibited reactive oxygen species (ROS) accumulation (P<0.001) and apoptosis (P<0.001) compared to the controls when the cells were exposed to hypoxia. Moreover, over-expression of UCP2 inhibited the release of cytochrome C and reduced the activation of caspase-9. Conversely, suppression of UCP2 resulted in the ROS generation (P = 0.006), the induction of apoptosis (P<0.001), and the release of cytochrome C from mitochondria to the cytosolic fraction, thus activating caspase-9. These data suggest that over-expression of UCP2 has anti-apoptotic properties by inhibiting ROS-mediated apoptosis in A549 cells under hypoxic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.