In this paper, we investigate the channel estimation and decoding methods exploiting the channel sparsity in pilot-assisted Multiple-Input Multiple-Output (MIMO) Vector Orthogonal Frequency Division Multiplexing (V-OFDM) systems. Based on the sparse multipath channels, we utilize orthogonal and non-orthogonal pilot schemes to design the compressed sensing (CS) measurement process. For the optimization of the sensing matrix, we discuss the influence of pilot search algorithms and evaluation criteria and propose a particle swarm optimization (PSO) based pilot search algorithm with the simplified evaluation criterion to improve the pilot design procedure. Meanwhile, the effect of pilot insertion on the Peak-to-Average Power Ratio (PAPR) is reduced by a particular precoding matrix method without affecting the decoding complexity. Simulation data are used to evaluate the classical sparsity adaptive matching (SAMP) algorithms and the proposed Variable Threshold SAMP (VTSAMP) algorithm, and the results show that the improved method has higher channel estimation accuracy with unknown sparsity. On the other hand, to overcome the complexity of CS-based decoding, we design the fully connected Deep Neural Network (FC-DNN) decoders, which combine the results of channel estimation results with the prevalent neural network technology. We observe that when the sparse channels are estimated accurately by CS methods, the proposed FC-DNN can achieve the same performance as the high-precision linear decoder by using the time-domain pilots and channel estimation results. INDEX TERMS MIMO, OFDM, compressed sensing, channel estimation, peak to average power ratio, decoding, neural networks.
High-resolution logging images with glaring detail information are useful for analysing geological features in the field of ultrasonic logging. The resolution of logging images is, however, severely constrained by the complexity of the borehole and the frequency restriction of the ultrasonic transducer. In order to improve the image superresolution reconstruction algorithm, this paper proposes a type of ultrasonic logging based on high-frequency characteristics, with multiscale dilated convolution to feature as the basis of network-learning blocks, training in the fusion of different scale texture feature. The outcomes of other superresolution reconstruction algorithms are then compared to the outcomes of the two-, four-, and eightfold reconstruction. The proposed algorithm enhances subjective vision while also enhancing PSNR and SSIM evaluation indexes, according to a large number of experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.