Powdery mildew and leaf rust, caused by Blumeria graminis f. sp. tritici (Bgt) and Puccinia triticina (Pt), respectively, are widespread diseases of wheat worldwide. Utilizing resistant cultivars is considered as the most economical, environmental-friendly, and effective method to control these diseases. In the present study, a collection of 2,978 wheat accessions consisting of 1,394 advanced breeding lines, 1,078 Chinese cultivars, 291 introduced cultivars, 132 lines containing alien chromosomes, and 83 landraces was tested for reactions to powdery mildew and leaf rust. The results indicated that 659 (22.1%) wheat accessions were highly resistant to a widely prevalent Bgt isolate, E09, at the seedling stage, and 390 were consistently resistant to the mixture of Bgt isolates at the adult-plant stage. Meanwhile, 63 (2.1%) accessions were highly resistant to leaf rust at the adult-plant stage, of which 54 were resistant to a predominant and highly virulent Pt race, THTT, at the seedling stage. Notably, 17 accessions were resistant to both powdery mildew and leaf rust. To detect known genes for resistance to powdery mildew and leaf rust, these accessions were tested with gene-specific or tightly linked markers for seven Pm genes (Pm2, Pm4, Pm5, Pm6, Pm8, Pm21, and Pm24) and ten Lr genes (Lr1, Lr9, Lr10, Lr19, Lr20, Lr24, Lr26, Lr34, Lr37, and Lr46). Of the 659 powdery mildew-resistant accessions, 328 might carry single Pm genes and 191 carry combined Pm genes. Pm2 was detected at the highest frequency of 59.6%, followed by Pm8, Pm6, Pm21, Pm4, and Pm5, while Pm24 was not detected. Besides, 139 accessions might contain unknown Pm genes different from those tested in this study. In the 63 accessions resistant leaf rust, four Lr genes (Lr1, Lr10, Lr26, and Lr34) were detected in 41 accessions either singly or in combination, while six genes (Lr9, Lr19, Lr20, Lr24, Lr37, and Lr46) were not detected. Twenty-two accessions might contain unknown Lr genes different from those tested in this study. This study not only provided important information for rationally distributing resistance genes in wheat breeding programs, but also identified resistant germplasm that might have novel genes to enrich the diversity of resistance sources.
Background Plant height (PH), spike length (SL) and spike compactness (SCN) are important agronomic traits in wheat due to their strong correlations with lodging and yield. Thus, dissection of their genetic basis is essential for the improvement of plant architecture and yield potential in wheat breeding. The objective of this study was to map quantitative trait loci (QTL) for PH, SL and SCN in a recombinant inbred line (RIL) population derived from the cross ‘PuBing3228 × Gao8901’ (PG-RIL) and to evaluate the potential values of these QTL to improve yield. Results In the current study, Five, six and ten stable QTL for PH, SL, and SCN, respectively, were identified in at least two individual environments. Five major QTL QPh.cas-5A.3, QPh.cas-6A, QSl.cas-6B.2, QScn.cas-2B.2 and QScn.cas-6B explained 5.58–25.68% of the phenotypic variation. Notably, two, three and three novel stable QTL for PH, SL and SCN were identified in this study, which could provide further insights into the genetic factors that shape PH and spike morphology in wheat. Conditional QTL analysis revealed that QTL for SCN were mainly affected by SL. Moreover, a Kompetitive Allele Specific PCR (KASP) marker tightly linked to stable major QTL QPh.cas-5A.3 was developed and verified using the PG-RIL population and a natural population. Conclusions Twenty-one stable QTL related to PH, SL, and SCN were identified. These stable QTL and the user-friendly marker KASP8750 will facilitate future studies involving positional cloning and marker-assisted selection in breeding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.