A class of infinite horizon optimal control problems involving L p -type cost functionals with 0 < p ≤ 1 is discussed. The existence of optimal controls is studied for both the convex case with p = 1 and the nonconvex case with 0 < p < 1, and the sparsity structure of the optimal controls promoted by the L p -type penalties is analyzed. A dynamic programming approach is proposed to numerically approximate the corresponding sparse optimal controllers.
A system of Hamilton Jacobi (HJ) equations on a partition of R d is considered, and a uniqueness and existence result of viscosity solution is analyzed. While the notion of viscosity notion is by now well known, the question of uniqueness of solution, when the Hamiltonian is discontinuous, remains an important issue. A uniqueness result has been derived for a class of problems, where the behavior of the solution, in the region of discontinuity of the Hamiltonian, is assumed to be irrelevant and can be ignored (see reference [10]) . Here, we provide a new uniqueness result for a more general class of Hamilton-Jacobi equations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.