The development of melt spinning technique for preparation of metallic glasses was summarized. The limitations as well as restrictions of the melt spinning embodiments were also analyzed. As an improvement and variation of the melt spinning method, the vertical-type twin-roll casting (VTRC) process was discussed. As the thermal history experienced by the casting metals to a great extent determines the qualities of final products, cooling rate in the quenching process is believed to have a significant effect on glass formation. In order to estimate the ability to produce metallic glasses by VTRC method, temperature and flow phenomena of the melt in molten pool were computed, and cooling rates under different casting conditions were calculated with the simulation results. Considering the fluid character during casting process, the material derivative method based on continuum theory was adopted in the cooling rate calculation. Results show that the VTRC process has a good ability in continuous casting metallic glassy ribbons.
Metallic materials with micron grains, submicron grains, or amorphous structures have attracted great interest in recent decades owing to their excellent mechanical properties and corrosion resistance. Compared with traditional forming processes, rapid solidification technology has shown great superiority and potential in the preparation of materials in such structures. In this study, fine-grained quasiamorphous Mg-based alloy strips fabricated by a twin-roll strip casting process were explored using simulation and experimental methods. The concept of critical casting speed was proposed to reflect the optimum casting conditions. The product of critical casting speed and strip thickness was used to evaluate the cooling capacity of the casting system. Based on simulation results, a twin-roll strip-casting experiment was performed on a Mg-rare earth alloy. A novel puddle-like microstructure of the as-cast alloy strip was obtained. Tensile testing results showed that the novel strip exhibited improved ductility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.