The selection of the optimal demodulation frequency band is a significant step in bearing fault diagnosis because it determines whether the fault information can be extracted from the demodulated signal via envelope analysis. Two well-known methods for selecting the demodulation band are the Fast Kurtogram, based on the kurtosis of the filtered time signal, and the Protrugram, which uses the kurtosis of the envelope (amplitude) spectrum. Although these two methods have been successfully applied in many cases, the authors have observed that they may fail in specific environments, such as in the presence of electromagnetic interference (EMI) or other impulsive masking signals. In this paper, a simple spectral kurtosis-based approach is proposed for selecting the best demodulation band to extract bearing fault-related impulsive content from vibration signals contaminated with strong EMI. The method is applied to vibration signals obtained from a planetary gearbox test rig with planet bearings seeded with inner and outer race faults. Results from the Fast Kurtogram and Protrugram methods are also included for comparison. The proposed approach is found to exhibit superior diagnostic performance in the presence of intense EMI. Another contribution of the paper is to introduce and explain the issue of EMI to the condition monitoring community. The paper outlines the characteristics of EMI arising from widely-used variable frequency drives, and these characteristics are used to simulate an EMI-contaminated vibration signal to further test the performance of the proposed approach. Although EMI has been acknowledged as a serious problem in many industrial cases, there have been very few studies showing its adverse effects on machine diagnostics. It is important for analysts to be able to identify EMI in measured vibration signals, lest it interfere with the analysis undertaken.
Objective: The purpose of this study was to evaluate the efficacy of ultrasonography-guided percutaneous A1 pulley release with the needle knife for trigger finger. Methods: The prospective study included 21 patients (21 fingers) who underwent blind release with the needle knife and 20 patients (20 fingers) who underwent ultrasonography-guided release with the needle knife. The thickness and width of A1 pulley, clinical grade before and after release, complications, and operation time were compared between the groups. Results: The results showed that the ultrasonography-guided group had significantly better grade postoperatively and reached to 100% complete release in one time compared to the blind group ( p < 0.05). Moreover, no any complications had been happened in the ultrasonography-guided group. A relatively longer operation time of the ultrasonography-guided group was observed compared to the time of the blind group. Conclusions: The needle knife is a very good tool for release of triggering fingers. Ultrasound provides a direct and precise visualization of the thickness, width and location of A1 pulley lesion. The combined use of ultrasound and the needle knife can achieve the best result for trigger finger. Moreover, the combination changes the traditional opinion and operator-dependent mode that were once widely adopted in the hospital of Chinese Medicine.
a b s t r a c tPlanetary gearboxes exhibit unique challenges in bearing fault detection. This paper presents a hybrid approach for fault diagnosis of planetary bearings using an internal vibration sensor and novel signal processing strategies. An accelerometer is mounted internally on the planet carrier to address the issues of variable transmission path. An effective bearing faults detection algorism is developed by employing several advanced signal processing techniques, including Cepstrum whitening, minimum entropy deconvolution (MED), spectral kurtosis (SK) and envelope analysis. The adverse effect of the electromagnetic interference in the signal due to the use of a slip ring is tackled by optimizing the SK technique for demodulation band selection. The proposed method is assessed by analyzing experimental data from a planetary gearbox test rig with seeded bearing faults. The result shows that the new method can effectively detect both inner race and outer race faults of the planetary bearing.
During a spaceflight, astronauts need to live in a spacecraft on orbit for a long time, and the relationship between humans and microorganisms in the closed environment of space is not the same as on the ground. The dynamic study of microorganisms in confined space shows that with the extension of the isolation time, harmful bacteria gradually accumulate. Monitoring and controlling microbial pollution in a confined environment system are very important for crew health and the sustainable operation of a space life support system. Culture-based assays have been used traditionally to assess the microbial loads in a spacecraft, and uncultured-based techniques are already under way according to the NASA global exploration roadmap. High-throughput sequencing technology has been used generally to study the communities of the environment and human on the ground and shows its broad prospects applied onboard. We here review the recent application of high-throughput sequencing on space microbiology and analyze its feasibility and potential as an on-orbit detection technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.