The gas content and permeability of the coal reservoir are the key factors affecting coalbed methane (CBM) productivity. To investigate the geological controls on the permeability and gas content of coal reservoirs in the Daning block, southern Qinshui Basin, geological surveys combined with laboratory experiments, including coal petrology analysis, proximate analysis, and methane isothermal adsorption experiments, were carried out. The results show that the gas content of coals in the Daning block ranges from 5.56 to 17.57 (avg. 12.83) m 3 /t, and the coal permeability is generally above 0.1 mD, averaging 0.96 mD. The gas content of coal reservoirs shows decreasing trends with the increase in ash yield and moisture content, while tends to increase with the increase of vitrinite content; however, the correlation coefficients are all extremely low. The gas content presents a strong positive correlation with the burial depth of coal seams, but overall poorly correlates with the coal thickness. The CBM-rich areas are generally located at the hinge zones of secondary synclines, while the lower gas content areas commonly occur at the hinge zones of secondary anticlines. The normal faults are developed in the Daning block, and as expected, the gas content of coal seams that are near the normal faults is commonly lower. It was found that the well testing permeability of coal reservoirs in the Daning block decreases exponentially with the increase of the minimum horizontal stress (σ h ) and the maximum horizontal principal stress (σ H ). With the increase of the burial depth, the coal permeability also decreases exponentially. The primary and cataclastic structure coals generally have a higher hydro-fracturing permeability than the granulitic and mylonitic structure coals. This work can serve as a guide for the target area selections of CBM enrichment and high production in the Daning block.
As the most active and top producing area of coalbed methane (CBM) in China, the southern Qinshui Basin (SQB) is dominated by anthracite. Due to the low permeability of coals, plenty of non-gas-producing and low production CBM wells exist in the SQB. The permeability enhancement through some technological means is the key to increasing the CBM production of this area. In this paper, some typical anthracites were selected from the Daning block of the SQB to assess the effect of acidification treatments on permeability enhancement. The maceral composition determination shows that approximately 15% of minerals exist in the collected coal samples, and the X-ray diffractometer (XRD) results reveal that the minerals consist primarily of clay minerals, along with a little amount of quartz, calcite, and dolomite. Two types of acidizing fluids were used to conduct acidification treatments on the anthracites for different lengths of time. The N2 permeability of the anthracites before and after acidification was measured and compared. The results show that the original samples exhibit low permeability. As the acidification time increases, the permeability of all of the samples shows an increasing trend, and the acid sensitivity index I a increases rapidly first and then levels off, and finally approaches 1. After 48 h of acidification, the samples show an increase ranging from 8.75 to 22.67 times (avg. 14.3 times) the original permeability. The permeability enhancement of the SQB anthracites is mainly attributed to the dissolution of acid-soluble minerals in the cleat system of coal. The minerals in the cleats are completely or partially dissolved by the acids, generating some soluble and insoluble substances; when the fluid flows through, the cleat space is reallocated. Overall, the cleat demineralization by acids frees up a lot of cleat spaces, leading to an increase in cleat connectivity. As a result, the fluid movement becomes smooth and the permeability of coal improves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.