3D visual perception tasks, including 3D detection and map segmentation based on multi-camera images, are essential for autonomous driving systems. In this work, we present a new framework termed BEVFormer, which learns unified BEV representations with spatiotemporal transformers to support multiple autonomous driving perception tasks. In a nutshell, BEVFormer exploits both spatial and temporal information by interacting with spatial and temporal space through predefined grid-shaped BEV queries. To aggregate spatial information, we design a spatial cross-attention that each BEV query extracts the spatial features from the regions of interest across camera views. For temporal information, we propose a temporal self-attention to recurrently fuse the history BEV information. Our approach achieves the new state-of-the-art 56.9% in terms of NDS metric on the nuScenes test set, which is 9.0 points higher than previous best arts and on par with the performance of LiDAR-based baselines. We further show that BEVFormer remarkably improves the accuracy of velocity estimation and recall of objects under low visibility conditions. The code will be released at https://github.com/zhiqi-li/BEVFormer.
Highlights d Multiple infections reduce DHCR7 expression but increase AKT3 expression in macrophages d DHCR7 deficiency and 7-DHC treatment activate the PI3K-AKT3 pathway d AKT3 binds IRF3 to enhance IRF3 Ser385 phosphorylation needed for full IRF3 activation d Targeting DHCR7 protects mice from various viral infections
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.