Open surface water bodies play an important role in agricultural and industrial production, and are susceptible to climate change and human activities. Remote sensing data has been increasingly used to map open surface water bodies at local, regional, and global scales. In addition to image statistics-based supervised and unsupervised classifiers, spectral index-and threshold-based approaches have also been widely used. Many water indices have been proposed to identify surface water bodies; however, the differences in performances of these water indices as well as different sensors on water body mapping are not well documented. In this study, we reviewed and compared existing open surface water body mapping approaches based on six widely-used water indices, including the tasseled cap wetness index (TCW), normalized difference water index (NDWI), modified normalized difference water index (mNDWI), sum of near infrared and two shortwave infrared bands (Sum457), automated water extraction index (AWEI), land surface water index (LSWI), as well as three medium resolution sensors (Landsat 7 ETM+, Landsat 8 OLI, and Sentinel-2 MSI). A case region in the Poyang Lake Basin, China, was selected to examine the accuracies of the open surface water body maps from the 27 combinations of different algorithms and sensors. The results showed that generally all the algorithms had reasonably high accuracies with Kappa Coefficients ranging from 0.77 to 0.92. The NDWI-based algorithms performed slightly better than the algorithms based on other water indices in the study area, which could be related to the pure water body dominance in the region, while the sensitivities of water indices could differ for various water body conditions. The resultant maps from Landsat 8 and Sentinel-2 data had higher overall accuracies than those from Landsat 7. Specifically, all three sensors had similar producer accuracies while Landsat 7 based results had a lower user accuracy. This study demonstrates the improved performance in Landsat 8 and Sentinel-2 for open surface water body mapping efforts.
Abstract:Forests play an important role in maintaining ecosystem services, especially in ecologically fragile areas such as the Loess Plateau (LP) in China. However, there is still great uncertainty in the spatial extent and distribution of forests in such a fragmented region. In order to examine the advantages and disadvantages of existing forest mapping products, we conducted a thorough accuracy assessment on the eight recent, medium resolution (30-50 m) products by using the LP in 2010 as the region of interest. These mapping products include Landsat and/or PALSAR images, including the forest products from GlobeLand30, FROM-GLC, Hansen, ChinaCover, NLCD-China, GLCF VCF, OU-FDL, and JAXA. The same validation data were used to assess and rank the accuracy of each product. Additionally, the spatial consistency of the different forest products and their dependence on the terrain were analyzed. The results showed that the overall accuracies of the eight forest products on the LP in 2010 were between 0.93 ± 0.003 and 0.97 ± 0.002 with a 95% confidence interval, and GlobeLand30 presented the highest overall accuracy (0.97 ± 0.002). Among them, the PALSAR-based products (OU-FDL and JAXA) indicated relatively high accuracies, while the six Landsat-based products showed a large diversity in the accuracy. According to the eight products, the total estimated forest area of the LP varied from 7.627 ± 0.077 to 10.196 ± 0.1 million ha with a 95% confidence interval. We also found that the consistency in the spatial distribution of forests between these maps: (1) increased substantially with increasing elevation until 2000m, but then decreased at higher elevations, and (2) showed mild variation along increasing slope, but had a slight rate of increase. Our findings implied that future forest mapping studies should consider topographical attributes such as elevation and slope in their final products. Our results are fundamental in guiding future applications of these existing forest maps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.