Many genome variants shaping mammalian phenotype are hypothesized to regulate gene transcription and/or to be under selection. However, most of the evidence to support this hypothesis comes from human studies. Systematic evidence for regulatory and evolutionary signals contributing to complex traits in a different mammalian model is needed. Sequence variants associated with gene expression (expression quantitative trait loci [eQTLs]) and concentration of metabolites (metabolic quantitative trait loci [mQTLs]) and under histone-modification marks in several tissues were discovered from multiomics data of over 400 cattle. Variants under selection and evolutionary constraint were identified using genome databases of multiple species. These analyses defined 30 sets of variants, and for each set, we estimated the genetic variance the set explained across 34 complex traits in 11,923 bulls and 32,347 cows with 17,669,372 imputed variants. The per-variant trait heritability of these sets across traits was highly consistent (r > 0.94) between bulls and cows. Based on the per-variant heritability, conserved sites across 100 vertebrate species and mQTLs ranked the highest, followed by eQTLs, young variants, those under histone-modification marks, and selection signatures. From these results, we defined a Functional-And-Evolutionary Trait Heritability (FAETH) score indicating the functionality and predicted heritability of each variant. In additional 7,551 cattle, the high FAETH-ranking variants had significantly increased genetic variances and genomic prediction accuracies in 3 production traits compared to the low FAETH-ranking variants. The FAETH framework combines the information of gene regulation, evolution, and trait heritability to rank variants, and the publicly available FAETH data provide a set of biological priors for cattle genomic selection worldwide.
Cinnamoyl CoA-reductase (CCR) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the biosynthesis of monolignols, which serve as building blocks in the formation of plant lignin. We identified candidate genes encoding these two enzymes in perennial ryegrass (Lolium perenne) and show that the spatio-temporal expression patterns of these genes in planta correlate well with the developmental profile of lignin deposition. Downregulation of CCR1 and caffeic acid O-methyltransferase 1 (OMT1 ) using an RNA interference-mediated silencing strategy caused dramatic changes in lignin level and composition in transgenic perennial ryegrass plants grown under both glasshouse and field conditions. In CCR1-deficient perennial ryegrass plants, metabolic profiling indicates the redirection of intermediates both within and beyond the core phenylpropanoid pathway. The combined results strongly support a key role for the OMT1 gene product in the biosynthesis of both syringyl-and guaiacyl-lignin subunits in perennial ryegrass. Both field-grown OMT1-deficient and CCR1-deficient perennial ryegrass plants showed enhanced digestibility without obvious detrimental effects on either plant fitness or biomass production. This highlights the potential of metabolic engineering not only to enhance the forage quality of grasses but also to produce optimal feedstock plants for biofuel production.
A genome wide search for new BH3-containing Bcl-2 family members was conducted using position weight matrices (PWM) and identified a large (480 kDa), novel BH3-only protein, originally called LASU1 (now also known as Ureb-1, E3 histone , ARF-BP1, and Mule). We demonstrated that LASU1 is an E3 ligase that ubiquitinated Mcl-1 in vitro and was required for its proteasome-dependent degradation in HeLa cells. Of note, the BH3 domain of LASU1 interacted with Mcl-1 but not with Bcl-2 or Bcl-Xl. A competing BH3-ligand derived from Bim interacted with Mcl-1 and prevented its interaction with LASU1 in HeLa cells, causing elevation of the steady-state levels of Mcl-1. This suggests that the unliganded form of Mcl-1 is sensitive to LASU1-mediated degradation of Mcl-1.
During spermatogenesis, a large fraction of cellular proteins is degraded as the spermatids evolve to their elongated mature forms. In particular, histones must be degraded in early elongating spermatids to permit chromatin condensation. Our laboratory previously demonstrated the activation of ubiquitin conjugation during spermatogenesis. This activation is dependent on the ubiquitin-conjugating enzyme (E2) UBC4, and a testis-particular isoform, UBC4-testis, is induced when histones are degraded. Therefore, we tested whether there are UBC4-dependent ubiquitin protein ligases (E3s) that can ubiquitinate histones. Indeed, a novel enzyme, E3Histone , which could conjugate ubiquitin to histones H1, H2A, H2B, H3, and H4 in vitro, was found. Only the UBC4/UBC5 family of E2s supported E3Histone -dependent ubiquitination of histone H2A, and of this family, UBC4-1 and UBC4-testis are the preferred E2s. We purified this ligase activity 3,600-fold to near homogeneity. Mass spectrometry of the final material revealed the presence of a 482-kDa HECT domaincontaining protein, which was previously named LASU1. Anti-LASU1 antibodies immunodepleted E3 Histone activity. Mass spectrometry and size analysis by gel filtration and glycerol gradient centrifugation suggested that E3Histone is a monomer of LASU1. Our assays also show that this enzyme is the major UBC4-1-dependent histone-ubiquitinating E3. E3Histone is therefore a HECT domain E3 that likely plays an important role in the chromatin condensation that occurs during spermatid maturation.Spermatogenesis is a complex developmental process during which stem cell spermatogonia are transformed into highly differentiated spermatids (12). This transformation can be divided into three phases. The first phase is the proliferative phase, in which spermatogonia undergo successive mitotic divisions. Subsequently, in the meiotic phase, spermatogonia are transformed into spermatocytes in which the genetic material undergoes homologous recombination and two sequential cell divisions, resulting in haploid spermatids. In the final (spermiogenic) phase, the spermatids are transformed into cells that are structurally equipped to reach and fertilize the eggs. During spermiogenesis, each immature spermatid develops an acrosome and a tail, reorganizes its mitochondria, and loses most of its cytoplasm.Proteolysis plays an important role in these developmental phases. In the first two phases, proteolysis is essential in regulating the cell cycle. Proteolysis also appears to be important for the third (spermiogenic) phase. During this cellular remodeling of haploid spermatids, many proteins are degraded. Histones are among the key proteins that undergo proteolysis (29). Upon degradation in early and late elongated spermatids, histones are replaced by transition proteins, which in turn are replaced by protamines (29). The substitution of histones by protamines is essential to permit the condensation of chromatin into the narrow head of the compact and elongated mature spermatid. The mechanisms underl...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.