In the present study, Antheraea pernyi silk fibroin (Ap-SF) is employed to regulate the mineralization of hydroxyapatite (HAp) nanocrystals. Calcium phosphate crystals precipitate in the aqueous solution of regenerated Ap-SF at pH 7.4 and room temperature. The samples are charaterized with X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Based on the XRD results, the inorganic phase in the mineralized Ap-SF composites is HAp as small particles with low crystallinity. The FTIR analysis reveals that the HAp crystals are carbonate-substituted HAp and compounded with Ap-SF. The TEM images show mineralized nanofibrils in the composites as rod-like shapes 4—5 nm in diameter. Electron diffraction (SAED) patterns of selected areas of the composites exhibit polycrystalline rings that are ascribed to HAp. SEM images show mineralized Ap-SF composites with several mineralized rods 49—74 nm in diameter.
A modified bead structure nozzle for the electrospinning process was developed to improve the production efficiency of nanofibers and facilitate the cleaning of equipment. The effects of the flow rate, voltage and receiving distance on the number of jets were studied. The results indicate that the number of stable jets can be effectively controlled by spinning conditions. The rotating spinning phenomenon, which occurred during spinning, was subjected to force analysis. The COMSOL Multiphysics model was applied to simulate the electric field to show that the bead structured nozzle does not change the overall spinning electric field compared with traditional spinning. The results indicate that the bead structure nozzle can produce a stable multi-jet using a curved surface structure and improve the production efficiency of nanofibers. Compared with the high-voltage conditions of needleless spinning, the beadtype nozzle helps to save energy and facilitate cleaning, so as to avoid the production of waste in experimental research and industrial production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.