Interface charge transfer plays a key role in the performance of semiconductors for different kinds of solar energy utilization, such as photocatalysis, photoelectrocatalysis, photochromism and photo-induced superhydrophilicity. In previous studies, different mechanisms have been used to understand interface charge transfer process. However, the charge transfer mechanism at solid/liquid interface remains a controversial topic. Here, taking TiO2 as a model, we find and prove a new characteristic of photo-induced bipolarity of the surface layer (reduction faradaic layer and oxidation faradaic layer) on a semiconductor by experiments for the first time. Different from energy level positions in classic surface states transfer mechanism, the potential window of a surface faradaic layer locates out of the forbidden band. Moreover, we find that the reduction faradaic layer and oxidation faradaic layer serve as electron and hole transfer mediators in photocatalysis, while the bipolarity or mono-polarity of the surface layer on a semiconductor depends on the applied potential in photoelectrocatalysis. The new characteristic of bipolarity can also offer new insights on charge transfer process at semiconductor/liquid interface for solar energy utilization.
The detection of monoamine neurotransmitters has become a vital research subject due to their high correlations with nervous system diseases, but insufficient detection precisions have obstructed diagnosis of some related diseases. Here, we focus on four monoamine neurotransmitters, dopamine, norepinephrine, epinephrine, and serotonin, to conduct their rapid and ultrasensitive detection. We find that the low-frequency (<200 cm −1 ) Raman vibrations of these molecules show some sharp peaks, and their intensities are significantly stronger than those of the high-frequency side. Theoretical calculations identify these peaks to be from strong out-ofplane vibrations of the C−C single bonds at the joint point of the ring-like molecule and its side chain. Using our surface enhanced low-frequency Raman scattering substrates, we show that the detection limit of dopamine as an example can reach 10 nM in artificial cerebrospinal fluid. This work provides a useful way for ultrasensitive and rapid detection of some neurotransmitters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.