The performance of Global Navigation Satellite System (GNSS) and Inertial Navigation System (INS) integrated navigation can be severely degraded in urban canyons due to the non-line-of-sight (NLOS) signals and multipath effects. Therefore, to achieve a high-precision and robust integrated system, real-time fault detection and localization algorithms are needed to ensure integrity. Currently, the residual chi-square test is used for fault detection in the positioning domain, but it has poor sensitivity when faults disappear. Three-dimensional (3D) light detection and ranging (LiDAR) has good positioning performance in complex environments. First, a LiDAR aided real-time fault detection algorithm is proposed. A test statistic is constructed by the mean deviation of the matched targets, and a dynamic threshold is constructed by a sliding window. Second, to solve the problem that measurement noise is estimated by prior modeling with a certain error, a LiDAR aided real-time measurement noise estimation based on adaptive filter localization algorithm is proposed according to the position deviations of matched targets. Finally, the integrity of the integrated system is assessed. The error bound of integrated positioning is innovatively verified with real test data. We conduct two experiments with a vehicle going through a viaduct and a floor hole, which, represent mid and deep urban canyons, respectively. The experimental results show that in terms of fault detection, the fault could be detected in mid urban canyons and the response time of fault disappearance is reduced by 70.24% in deep urban canyons. Thus, the poor sensitivity of the residual chi-square test for fault disappearance is improved. In terms of localization, the proposed algorithm is compared with the optimal fading factor adaptive filter (OFFAF) and the extended Kalman filter (EKF). The proposed algorithm is the most effective, and the Root Mean Square Error (RMSE) in the east and north is reduced by 12.98% and 35.1% in deep urban canyons. Regarding integrity assessment, the error bound can overbound the positioning errors in deep urban canyons relative to the EKF and the mean value of the error bounds is reduced.
No abstract
In high-precision dynamic positioning, it is necessary to ensure the positioning accuracy and reliability of the navigation system, especially for safety–critical applications, such as intelligent vehicle navigation. In the face of a complex observation environment, when the global navigation satellite system (GNSS) uses carrier phase observations for high-precision relative positioning, ambiguity resolution will be affected, and it is difficult to estimate all ambiguities. In addition, when the GNSS signal quality and measurement noise level are difficult to predict in an environment with many occlusions, the received satellite observations are prone to very large errors, resulting in apparent deviations in the positioning solution. However, traditional positioning algorithms assume that the measurement noise is constant, which is unrealistic. This will cause incorrect ambiguity resolution, lead to meter-level positioning errors, reduce the reliability of the system, and increase the integrity risk of the system. We proposed an innovative adaptive Kalman filter based on integer ambiguity validation (IAVAKF) to improve the efficiency of ambiguity resolution (AR) and positioning accuracy. The partial ambiguity resolution (PAR) method is applied to solve the integer ambiguities. Then, the accuracy of the fixed ambiguity is verified by the ambiguity success rate. Taking the ambiguity success rate as a dynamic adjustment factor, the measurement noise matrix and variance–covariance matrix of the state estimation is adaptively adjusted at each time interval in the Kalman filter to provide a smoothing effect for filtering. The optimal Kalman filter gain matrix is obtained to improve positioning accuracy and reliability. As a result, the static and dynamic vehicle experiments show that the positioning accuracy of the proposed IAVAKF is improved by 26% compared with the KF. Through the IAVAKF, a more realistic PL can be obtained and applied to evaluate the integrity of the navigation system in the position domain. It can reduce the false alarm rate by 2.45% and 1.85% in the horizontal and vertical directions, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.