Since the invention over a hundred years ago, plastics have been used in many applications, and they are involved in every aspect of our lives. The extensive usage of plastics results in a tremendous amount of waste, which has become a severe burden on the environment. Several degradation approaches exist in nature to cope with ever-increasing plastic waste. Among these approaches, biodegradation by microorganisms has emerged as a natural way, which is favored by many environmentally conscious societies. To facilitate the study on biodegradation of plastics, we developed an online resource, Plastics Microbial Biodegradation Database (PMBD), to gather and present the information about microbial biodegradation of plastics. In this database, 949 microorganisms–plastics relationships and 79 genes involved in the biodegradation of plastics were manually collected and confirmed through literature searching. In addition, more than 8000 automatically annotated enzyme sequences, which were predicted to be involved in the plastics biodegradation, were extracted from the TrEMBL section of the UniProt database. The PMBD database is presented with a website at http://pmbd.genome-mining.cn/home. Data may be accessed through browsing or searching. Also included on the website are a sequence alignment tool and a function prediction tool.
A conformal phosphor coating can realize a phosphor layer with uniform thickness, which could enhance the angular color uniformity (ACU) of light-emitting diode (LED) packaging. In this study, a novel freeform lens was designed for simultaneous realization of LED uniform illumination and conformal phosphor coating. The detailed algorithm of the design method, which involves an extended light source and double refractions, was presented. The packaging configuration of the LED modules and the modeling of the light-conversion process were also presented. Monte Carlo ray-tracing simulations were conducted to validate the design method by comparisons with a conventional freeform lens. It is demonstrated that for the LED module with the present freeform lens, the illumination uniformity and ACU was 0.89 and 0.9283, respectively. The present freeform lens can realize equivalent illumination uniformity, but the angular color uniformity can be enhanced by 282.3% when compared with the conventional freeform lens.
In the conventional freeform lens design, people usually assume the inner surface as hemispherical and only the outer surface is designed. An important design degree of freedom on the inner surface is abandoned. In this study, by distributing the deviation angle, we proposed a method to design the inner and outer surfaces of freeform lens simultaneously. Detailed design method was presented and several examples were designed to verify the method. It was found when the distribution ratio is 0.75, the simulated illumination is the most uniform and its Fresnel light loss is the rather smaller than that conventional freeform lens. By overall consideration of the illumination uniformity and the Fresnel loss, the distribution ratio of 0.75 is the optimal extra condition and corresponds to best performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.