The application of straw and biochar can effectively improve soil quality, but whether such application impacts paddy soil bacterial community development remains to be clarified. Herein, the impacts of three different field amendment strategies were assessed including control (CK) treatment, rice straw (RS) application (9000 kg ha−1), and biochar (BC) application (3150 kg ha−1). Soil samples were collected at five different stages of rice growth, and the bacterial communities therein were characterized via high-throughput 16S rDNA sequencing. The results of these analyses revealed that soil bacterial communities were dominated by three microbial groups (Chloroflexi, Proteobacteria and Acidobacteria). Compared with the CK samples, Chloroflexi, Actinobacteria, Nitrospirae and Gemmatimonadetes levels were dominated phyla in the RS treatment, and Acidobacteria, Actinobacteria, Nitrospirae and Patescibacteria were dominated phyla in the BC treatment. Compared with the RS samples, Chloroflexi, Acidobacteria, Actinobacteria, and Verrucomicrobia levels were increased, however, Proteobacteria, Gemmatimonadetes, Nitrospirae, and Firmicute levels were decreased in the BC samples. Rhizosphere soil bacterial diversity rose significantly following RS and BC amendment, and principal component analyses confirmed that there were significant differences in soil bacterial community composition among treatment groups when comparing all stages of rice growth other than the ripening stage. Relative to the CK treatment, Gemmatimonadaceae, Sphingomonadaceae, Thiovulaceae, Burkholderiaceae, and Clostridiaceae-1 families were dominant following the RS application, while Thiovulaceae and uncultured-bacterium-o-C0119 were dominant following the BC application. These findings suggest that RS and BC application can improve microbial diversity and richness in paddy rice soil in Northeast China.
A comprehensive understanding of rice cultivation techniques and organic amendments affecting soil quality, enzyme activities and bacterial community structure is crucial. We investigated two planting methods (direct seeding and transplanting) of paddy rice (Oryza sativa) and organic amendments with rice straw and biochar on crop yield and soil biological and physicochemical properties. Rhizosphere bacterial communities at the maturity stage of rice growth were characterized through high-throughput 16S rRNA sequencing. Soil biochemical properties and enzyme activity levels were analyzed. Grain yield of paddy rice with transplanting increased 10.6% more than that with direct seeding. The application of rice straw increased grain yield by 7.1 and 8.2%, more than with biochar and the control, respectively. Compared to biochar and the control, the application of rice straw significantly increased sucrase, cellulase, protease, organic carbon, available phosphorus, nitrate, and ammonium. The application of biochar increased microbial biomass nitrogen and carbon, urease, pH, available nitrogen, and available potassium compared to the application of rice straw and the control. Principal coordinate analysis and dissimilarity distances confirmed significant differences among the microbial communities associated with planting methods and organic amendments. Bacteroidetes, Nitrospirae, Firmicutes, and Gemmatimonadetes abundance increased with rice straw relative to biochar and the control. The biochar addition was associated with significant increases in Chloroflexi, Patescibacteria, Proteobacteria, and Actinobacteria abundance. Pearson’s correlation analyzes showed that Chloroflexi, Bacteroidetes and Nitrospirae abundance was positively correlated with grain yield. The relative abundance of these bacteria in soil may be beneficial for improving grain yield. These results suggest that planting methods and organic amendments impact soil biochemical characteristics, enzyme activity levels, and microbial community composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.