Space charge formation in polymeric materials can cause some serious concern for design engineers as the electric field may severely be distorted, leading to part of the material being overstressed. At the worst, this may result in material degradation and possibly premature failure. It is therefore important to understand charge generation, trapping, and detrapping processes in the material. In the present paper, the characteristics of charge trapping and detrapping in low density polyethylene under dc electric field have been investigated using the pulsed electroacoustic technique. It has been found that the charge decay shows very different characteristics for the sample with different periods of electric field application. To explain the results a simple trapping and detrapping model based on two trapping levels has been proposed. Qualitative analysis revealed the similar features to those observed experimentally.
Abstract-Increased renewable energy integration and international power trades have led to the construction and development of new HVDC transmission systems. HVDC cables, in particular, play an important role in undersea power transmission and offshore renewable energy integration having lower losses and higher reliability. In this paper, the current commercial feasibility of HVDC cables and the development of different types of HVDC cables and accessories are reviewed. The non-uniform electric field distribution caused by the applied voltage, temperature dependent conductivity, and space charge accumulation is briefly discussed. Current research in HVDC cable for higher operation voltage level and larger power capacity is also reviewed with specific focus on the methodologies of space charge suppression for XLPE extruded cables.
Space charge formation in polymeric materials can cause some serious concern for design engineers as the electric field may severely be distorted, leading to part of the material being overstressed. This may result in material degradation and possibly premature failure at the worst. It is therefore important to understand charge generation, trapping, and detrapping processes in the material. Trap depths and density of trapping states in materials are important as they are potentially related to microstructure of the material. Changes in these parameters may reflect the aging taken place in the material. In the present paper, characteristics of charge trapping and detrapping in low density polyethylene (LDPE) under dc electric field have been investigated using the pulsed electroacoustic (PEA) technique. A simple trapping and detrapping model based on two trapping levels has been used to qualitatively explain the observation. Numerical simulation based on the above model has been carried out to extract parameters related to trapping characteristics in the material. It has been found that the space charge decaying during the first few hundred seconds corresponding to the fast changing part of the slope was trapped with the shallow trap depth 0.88 eV, with trap density 1.47 × 1020 m−3 in the sample volume measured. At the same time, the space charge that decays at longer time corresponding to the slower part of the slope was trapped with the deep trap depth 1.01 eV, with its trap density 3.54 × 1018 m−3. The results also indicate that trap depths and density of both shallow and deep traps may be used as aging markers as changes in the material will certainly affect trapping characteristics in terms of trap depth and density.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.