The present study aimed to investigate the role and mechanism of micro RNA (miR)-128 in hypertension-induced myocardial injury. The peripheral blood of patients with hypertension was collected and the expression of miR-128 was detected using fluorescence reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Primary myocardial cells isolated from rat in vitro were cultured under conditions of hypoxia and glucose deprivation, and miR-128 expression was measured by RT-qPCR. The expression of c-Met protein was measured using western blot analysis and the apoptosis of transfected cells was measured by flow cytometry in rat myocardial cells following transfection with miR-128 mimics or c-Met siRNA. A luciferase assay was applied to assess the binding of miR-128 to c-Met mRNA. miR-128 expression was significantly higher in hypertension patients compared with controls (P<0.05). miR-128 expression was higher in patients with stage III/IV hypertension compared with patients with stage II hypertension. Similarly, miR-128 expression in primary cardiomyocytes cultured under deprivation of oxygen and glucose increased with the culture time and reached a peak at 12 h. c-Met expression decreased significantly (P<0.05) and the ratio of apoptotic cells increased significantly (P<0.05), following transfection of miR-128 mimics. The number of apoptotic cells also increased when c-Met expression was knocked down by siRNA. The dual luciferase assay indicated that fluorescence intensity decreased significantly in miR-128 mimics and wild type c-Met group (P<0.05), indicating that miR-128 can directly target c-Met. Therefore, the results of the current study suggest that miR-128 may promote myocardial cell injury by regulating c-Met expression.
We present Deuterium---a framework for implementing Java methods as executable contracts. Deuterium introduces a novel, type-safe way to write method contracts entirely in Java, as a combination of imperative generators and declarative specifications (written in a first-order relational logic with transitive closure). Existing approaches are typically based on encoding both the specification and the program heap into a constraint language, and then using an off-the-shelf constraint solver---without any additional guidance---to search for a new program heap that satisfies the specification. Deuterium takes advantage of user-provided generators to prune the search space and reduce incurred overhead of constraint solving. Deuterium supports two ways of solving declarative constraints: SAT-based and search-based with in-memory state exploration. We evaluate our approach on a suite of data structures, established as a standard benchmark by prior work. Furthermore, we use random and sequence-based test generation to create a new benchmark designed to mimic realistic execution scenarios. Our results show that generators improve the performance of executable contracts and that in-memory state exploration is the algorithm of choice when heap sizes are small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.