The topic of multi-person pose estimation has been largely improved recently, especially with the development of convolutional neural network. However, there still exist a lot of challenging cases, such as occluded keypoints, invisible keypoints and complex background, which cannot be well addressed. In this paper, we present a novel network structure called Cascaded Pyramid Network (CPN) which targets to relieve the problem from these "hard" keypoints. More specifically, our algorithm includes two stages: Glob-alNet and RefineNet. GlobalNet is a feature pyramid network which can successfully localize the "simple" keypoints like eyes and hands but may fail to precisely recognize the occluded or invisible keypoints. Our RefineNet tries explicitly handling the "hard" keypoints by integrating all levels of feature representations from the Global-Net together with an online hard keypoint mining loss. In general, to address the multi-person pose estimation problem, a top-down pipeline is adopted to first generate a set of human bounding boxes based on a detector, followed by our CPN for keypoint localization in each human bounding box. Based on the proposed algorithm, we achieve stateof-art results on the COCO keypoint benchmark, with average precision at 73.0 on the COCO test-dev dataset and 72.1 on the COCO test-challenge dataset, which is a 19% relative improvement compared with 60.5 from the COCO 2016 keypoint challenge. Code 1 and the detection results are publicly available for further research.
Road network extraction is one of the significant assignments for disaster emergency response, intelligent transportation systems, and real-time updating road network. Road extraction base on high-resolution remote sensing images has become a hot topic. Presently, most of the researches are based on traditional machine learning algorithms, which are complex and computational because of impervious surfaces such as roads and buildings that are discernible in the images. Given the above problems, we propose a new method to extract the road network from remote sensing images using a DenseUNet model with few parameters and robust characteristics. DenseUNet consists of dense connection units and skips connections, which strengthens the fusion of different scales by connections at various network layers. The performance of the advanced method is validated on two datasets of high-resolution images by comparison with three classical semantic segmentation methods. The experimental results show that the method can be used for road extraction in complex scenes.
Small and Medium-sized Enterprises (SMEs) are playing a vital role in the modern economy. Recent years, financial risk analysis for SMEs attracts lots of attentions from financial institutions.
However, the financial risk analysis for SMEs usually suffers data deficiency problem, especially for the mobile financial institutions which seldom collect credit-related data directly from SMEs.
Fortunately, although credit-related information of SMEs is hard to be acquired sufficiently, the interactive relationships between SMEs, which may contain valuable information of financial risk, is usually available for the mobile financial institutions.
Finding out credit-related relationship of SME from massive interactions helps comprehensively model the SMEs thus improve the performance of financial risk analysis.
In this paper, tackling the data deficiency problem of financial risk analysis for SMEs, we propose an innovative financial risk analysis framework with graph-based supply chain mining.
Specifically, to capture the credit-related topology structural and temporal variation information of SMEs, we design and employ a novel spatial-temporal aware graph neural network, to mine supply chain relationship on a SME graph, and then analysis the credit risk based on the mined supply chain graph.
Experimental results on real-world financial datasets prove the effectiveness of our proposal for financial risk analysis for SMEs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.