The structure-antibacterial activity relationship between the small molecular compounds and polymers are still elusive. Here, imidazolium-type ionic liquid (IL) monomers and their corresponding poly(ionic liquids) (PILs) and poly(ionic liquid) membranes were synthesized. The effect of chemical structure, including carbon chain length of substitution at the N3 position and charge density of cations (mono- or bis-imidazolium) on the antimicrobial activities against both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was investigated by determination of minimum inhibitory concentration (MIC). The antibacterial activities of both ILs and PILs were improved with the increase of the alkyl chain length and higher charge density (bis-cations) of imidazolium cations. Moreover, PILs exhibited lower MIC values relative to the IL monomers. However, the antibacterial activities of PIL membranes showed no correlation to those of their analogous small molecule IL monomers and PILs, which increased with the charge density (bis-cations) while decreasing with the increase of alkyl chain length. The results indicated that antibacterial property studies on small molecules and homopolymers may not provide a solid basis for evaluating that in corresponding polymer membranes.
Pyrrolidinium-type small molecule ionic liquids (ILs), poly(ionic liquid) (PIL) homopolymers, and their corresponding PIL membranes were synthesized and used for antibacterial applications. The influences of substitutions at the N position of pyrrolidinium cation on the antimicrobial activities against both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) were studied by minimum inhibitory concentration (MIC). The antibacterial efficiency of both the small molecule ILs and PIL homopolymers increased with the increase of the alkyl chain length of substitutions. Furthermore, PIL homopolymers show relatively lower MIC values, indicating better antimicrobial activities than those of the corresponding small molecule ILs. However, the antibacterial properties of the PIL membranes are contrary to corresponding ILs and PIL homopolymers, which reduce with the increase of alkyl chain length. Furthermore, the resultant PIL membranes show excellent hemocompatibility and low cytotoxicity toward human cells, demonstrating clinical feasibility in topical applications.
The development of materials with intrinsically antimicrobial activities has attracted great interest. Herein, we report the synthesis of free-standing and robust poly(ionic liquid) (PIL) membranes with high antibacterial activities by in situ photo-cross-linking of an ionic liquid monomer and followed by anion-exchange with an amino acid (L-proline (Pro) or L-tryptophan (Trp)). The resultant PIL-based membranes with excellent robustness exhibit high antimicrobial properties against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) and present no significant hemolysis and cytotoxicity toward human red blood and skin fibroblast cells, as well as low adsorption of bovine serum albumin. The synthesized PIL-Trp membranes exhibit the highest antibacterial efficiency due to the synergistic attributes of both imidazolium cation and Trp − anion. Furthermore, all the PIL-based membranes exhibit long-term antibacterial stability, which demonstrates clinical feasibility in topical applications.
Shape-morphing uses a single actuation source for complex-task-oriented multiple patterns generation, showing a more promising way than reconfiguration, especially for microrobots, where multiple actuators are typically hardly available. Environmental stimuli can induce additional causes of shape transformation to compensate the insufficient space for actuators and sensors, which enriches the shape-morphing and thereby enhances the function and intelligence as well. Here, making use of the ionic sensitivity of alginate hydrogel microstructures, we present a shape-morphing strategy for microrobotic end-effectors made from them to adapt to different physiochemical environments. Pre-programmed hydrogel crosslinks were embedded in different patterns within the alginate microstructures in an electric field using different electrode configurations. These microstructures were designed for accomplishing tasks such as targeting, releasing and sampling under the control of a magnetic field and environmental ionic stimuli. In addition to structural flexibility and environmental ion sensitivity, these end-effectors are also characterized by their complete biodegradability and versatile actuation modes. The latter includes global locomotion of the whole end-effector by self-trapping magnetic microspheres as a hitch-hiker and the local opening and closing of the jaws using encapsulated nanoparticles based on local ionic density or pH values. The versatility was demonstrated experimentally in both in vitro environments and ex vivo in a gastrointestinal tract. Global locomotion was programmable and the local opening and closing was achieved by changing the ionic density or pH values. This ‘structural intelligence’ will enable strategies for shape-morphing and functionalization, which have attracted growing interest for applications in minimally invasive medicine, soft robotics, and smart materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.