The electrochemical reduction of CO to multi-carbon products has attracted much attention because it provides an avenue to the synthesis of value-added carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the efficiency of CO conversion to C products remains below that necessary for its implementation at scale. Modifying the local electronic structure of copper with positive valence sites has been predicted to boost conversion to C products. Here, we use boron to tune the ratio of Cu to Cu active sites and improve both stability and C-product generation. Simulations show that the ability to tune the average oxidation state of copper enables control over CO adsorption and dimerization, and makes it possible to implement a preference for the electrosynthesis of C products. We report experimentally a C Faradaic efficiency of 79 ± 2% on boron-doped copper catalysts and further show that boron doping leads to catalysts that are stable for in excess of ~40 hours while electrochemically reducing CO to multi-carbon hydrocarbons.
The electrochemical carbon dioxide reduction reaction (CORR) produces diverse chemical species. Cu clusters with a judiciously controlled surface coordination number (CN) provide active sites that simultaneously optimize selectivity, activity, and efficiency for CORR. Here we report a strategy involving metal-organic framework (MOF)-regulated Cu cluster formation that shifts CO electroreduction toward multiple-carbon product generation. Specifically, we promoted undercoordinated sites during the formation of Cu clusters by controlling the structure of the Cu dimer, the precursor for Cu clusters. We distorted the symmetric paddle-wheel Cu dimer secondary building block of HKUST-1 to an asymmetric motif by separating adjacent benzene tricarboxylate moieties using thermal treatment. By varying materials processing conditions, we modulated the asymmetric local atomic structure, oxidation state and bonding strain of Cu dimers. Using electron paramagnetic resonance (EPR) and in situ X-ray absorption spectroscopy (XAS) experiments, we observed the formation of Cu clusters with low CN from distorted Cu dimers in HKUST-1 during CO electroreduction. These exhibited 45% CH faradaic efficiency (FE), a record for MOF-derived Cu cluster catalysts. A structure-activity relationship was established wherein the tuning of the Cu-Cu CN in Cu clusters determines the CORR selectivity.
We developed a colloidal synthesis of CsPbBr perovskite nanocrystals (NCs) at a relative low temperature (90 °C) for the bright blue emission which differs from the original green emission (∼510 nm) of CsPbBr nanocubes as reported previously. Shapes of the obtained CsPbBr NCs can be systematically engineered into single and lamellar-structured 0D quantum dots, as well as face-to-face stacking 2D nanoplatelets and flat-lying 2D nanosheets via tuning the amounts of oleic acid (OA) and oleylamine (OM). They exhibit sharp excitonic PL emissions at 453, 472, 449, and 452 nm, respectively. The large blue shift relative to the emission of CsPbBr bulk crystal can be ascribed to the strong quantum confinement effects of these various nanoshapes. PL decay lifetimes are measured, ranging from several to tens of nanoseconds, which infers the higher ratio of exciton radiative recombination to the nonradiative trappers in the obtained CsPbBr NCs. These shape-controlled CsPbBr perovskite NCs with the bright blue emission will be widely used in optoelectronic applications, especially in blue LEDs which still lag behind compared to the better developed red and green LEDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.