Timely and accurate traffic speed predictions are an important part of the Intelligent Transportation System (ITS), which provides data support for traffic control and guidance. The speed evolution process is closely related to the topological structure of the road networks and has complex temporal and spatial dependence, in addition to being affected by various external factors. In this study, we propose a new Speed Prediction of Traffic Model Network (SPTMN). The model is largely based on a Temporal Convolution Network (TCN) and a Graph Convolution Network (GCN). The improved TCN is used to complete the extraction of time dimension and local spatial dimension features, and the topological relationship between road nodes is extracted by GCN, to accomplish global spatial dimension feature extraction. Finally, both spatial and temporal features are combined with road parameters to achieve accurate short-term traffic speed predictions. The experimental results show that the SPTMN model obtains the best performance under various road conditions, and compared with eight baseline methods, the prediction error is reduced by at least 8%. Moreover, the SPTMN model has high effectiveness and stability.
Traffic flow prediction provides support for travel management, vehicle scheduling, and intelligent transportation system construction. In this work, a graph space–time network (GSTNCNI), incorporating complex network feature information, is proposed to predict future highway traffic flow time series. Firstly, a traffic complex network model using traffic big data is established, the topological features of traffic road networks are then analyzed using complex network theory, and finally, the topological features are combined with graph neural networks to explore the roles played by the topological features of 97 traffic network nodes. Consequently, six complex network properties are discussed, namely, degree centrality, clustering coefficient, closeness centrality, betweenness centrality, point intensity, and shortest average path length. This study improves the graph convolutional neural network based on the above six complex network properties and proposes a graph spatial–temporal network consisting of a combination of several complex network properties. By comparison with existing baselines containing graph convolutional neural networks, it is verified that GSTNCNI possesses high traffic flow prediction accuracy and robustness. In addition, ablation experiments are conducted for six different complex network features to verify the effect of different complex network features on the model’s prediction accuracy. Experimental analysis indicates that the model with combined multiple complex network features has a higher prediction accuracy, and its performance is improved by 31.46% on average, compared with the model containing only one complex network feature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.