The diversity of network attacks poses severe challenges to intrusion detection systems (IDSs). Traditional attack recognition methods usually adopt mining data associations to identify anomalies, which has the disadvantages of a high false alarm rate (FAR), low recognition accuracy (ACC) and poor generalization ability. To ameliorate the comprehensive capabilities of IDS and strengthen network security, we propose a novel intrusion detection method based on the adaptive synthetic sampling (ADASYN) algorithm and an improved convolutional neural network (CNN). First, we use the ADASYN method to balance the sample distribution, which can effectively prevent the model from being sensitive to large samples and ignore small samples. Second, the improved CNN is based on the split convolution module (SPC-CNN), which can increase the diversity of features and eliminate the impact of interchannel information redundancy on model training. Then, an AS-CNN model mixed with ADASYN and SPC-CNN is used for intrusion detection tasks. Finally, the standard NSL-KDD dataset is selected to test AS-CNN. The simulation illustrates that the accuracy is 4.60% and 2.79% higher than that of the traditional CNN and RNN models, and the detection rate (DR) increased by 11.34% and 10.27%, respectively. Additionally, the FAR decreased by 15.58% and 14.57%, respectively, compared with the two models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.