Customizing products based on customer needs is an irreversible trend, and many companies strive to provide customized products to customers in less time. Customer requirements are a key factor in the company's ability to provide customized products. In order to better meet customer needs, solve the problem of incomplete and inaccurate expression, and improve the correlation between customized product performance and customer demand, a customized product method based on Bayesian network is proposed. First, the company built a custom product model based on Bayesian networks. According to the model, the customer selects some nodes and their related information. Then, we can accurately predict the final product model through the link tree algorithm, test the customer demand node to determine the focus of the customer's needs, and optimize the model. Finally, an example of a multifunctional nursing bed is used to illustrate the effectiveness of the method.
Aiming at addressing the problems of short battery life, low payload and unmeasured load ratio of logistics Unmanned Aerial Vehicles (UAVs), the Radial Basis Function (RBF) neural network was trained with the flight data of logistics UAV from the Internet of Things to predict the flight status of logistics UAVs. Under the condition that there are few available input samples and the convergence of RBF neural network is not accurate, a dynamic adjustment method of RBF neural network structure based on information entropy is proposed. This method calculates the information entropy of hidden layer neurons and output layer neurons, and quantifies the output information of hidden layer neurons and the interaction information between hidden layer neurons and output layer neurons. The structural design and optimization of RBF neural network were solved by increasing the hidden layer neurons or disconnecting unnecessary connections, according to the connection strength between neurons. The steepest descent learning algorithm was used to correct the parameters of the network structure to ensure the convergence accuracy of the RBF neural network. By predicting the regression values of the flight status of logistics UAVs, it is demonstrated that the information entropy-based RBF neural network proposed in this paper has good approximation ability for the prediction of nonlinear systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.