Background Circular RNAs (circRNAs) are involved in diverse processes that drive cancer development. However, the expression landscape and mechanistic function of circRNAs in osteosarcoma (OS) remain to be studied. Methods Bioinformatic analysis and high-throughput RNA sequencing tools were employed to identify differentially expressed circRNAs between OS and adjacent noncancerous tissues. The expression level of circ_001422 in clinical specimens and cell lines was measured using qRT-PCR. The association of circ_001422 expression with the clinicopathologic features of 55 recruited patients with OS was analyzed. Loss- and gain-of-function experiments were conducted to explore the role of circ_001422 in OS cells. RNA immunoprecipitation, fluorescence in situ hybridization, bioinformatics database analysis, RNA pulldown assays, dual-luciferase reporter assays, mRNA sequencing, and rescue experiments were conducted to decipher the competitive endogenous RNA regulatory network controlled by circ_001422. Results We characterized a novel and abundant circRNA, circ_001422, that promoted OS progression. Circ_001422 expression was dramatically increased in OS cell lines and tissues compared with noncancerous samples. Higher circ_001422 expression correlated with more advanced clinical stage, larger tumor size, higher incidence of distant metastases and poorer overall survival in OS patients. Circ_001422 knockdown markedly repressed the proliferation and metastasis and promoted the apoptosis of OS cells in vivo and in vitro, whereas circ_001422 overexpression exerted the opposite effects. Mechanistically, competitive interactions between circ_001422 and miR-195-5p elevated FGF2 expression while also initiating PI3K/Akt signaling. These events enhanced the malignant characteristics of OS cells. Conclusions Circ_001422 accelerates OS tumorigenesis and metastasis by modulating the miR-195-5p/FGF2/PI3K/Akt axis, implying that circ_001422 can be therapeutically targeted to treat OS.
Background: Accumulation evidence indicates the vital role of long non-coding RNAs (lncRNAs) in tumorigenesis and the progression of malignant tumors, including pancreatic cancer (PC). However, the role and the molecular mechanism of long non-coding RNA 00976 is unclear in pancreatic cancer. Methods: In situ hybridization (ISH) and qRT-PCR was performed to investigate the association between linc00976 expression and the clinicopathological characteristics and prognosis of patients with PC. Subsequently, linc00976 over-expression vector and shRNAs were transfected into PC cells to up-regulate or down-regulate linc00976 expression. Loss-and gain-of function assays were performed to investigate the role of linc00976 in proliferation and metastasis in vitro and vivo. ITRAQ, bioinformatic analysis and rescue assay were used to illustrate the ceRNA mechanism network of linc00976/miR-137/OTUD7B and its downstream EGFR/MAPK signaling pathway. Results: linc00976 expression was overexpressed in PC tissues and cell lines and was positively associated with poorer survival in patients with PC. Function studies revealed that linc00976 knockdown significantly suppressed cell proliferation, migration and invasion in vivo and in vitro, whereas its overexpression reversed these effects. Based on Itraq results and online database prediction, Ovarian tumor proteases OTUD7B was found as a downstream gene of linc00976, which deubiquitinated EGFR mediates MAPK signaling activation. Furthermore, Bioinformatics analysis and luciferase assays and rescue experiments revealed that linc00976/miR137/OTUD7B established the ceRNA network modulating PC cell proliferation and tumor growth. Conclusion: The present study demonstrates that linc00976 enhances the proliferation and invasion ability of PC cells by upregulating OTUD7B expression, which was a target of miR-137. Ultimately, OTUD7B mediates EGFR and MAPK signaling pathway, suggesting that linc00976/miR-137/OTUD7B/EGFR axis may act as a potential biomarker and therapeutic target for PC.
Pancreatic stellate cells (PSCs) are important components of the tumor microenvironment in pancreatic cancer (PC) and contribute to its development and metastasis through mechanisms that remain incompletely characterized. Tumor hypoxia affects the function and behavior of PC and stromal cells, and can alter exosomal content to modify cell-cell communication. The present study explored the effects of exosomal miRNAs produced by hypoxia-preconditioned PSCs on the growth and metastatic potential of PC cells. Subcutaneous xenografts and liver metastasis mouse models revealed increased tumorigenic potential upon co-implantation of PC cells and PSCs as compared to PC cells alone. Screening miRNA profiles of mouse plasma exosomes and cultured PSCs, followed by miRNA overexpression and inhibition assays, enabled us to identify miR-4465 and miR-616-3p as prominent hypoxia-induced, PSC-derived, exosomal miRNAs promoting PC cell proliferation, migration, and invasion. Proteomics analysis of PC cells incubated with exosomes derived from hypoxic PSCs showed significant downregulation of PTEN. Dual-luciferase reporter assays and western blotting showed that both miR-4465 and miR-616-3p target PTEN and activate AKT signaling in PC cells. We conclude that hypoxia upregulates miR-4465 and miR-616-3p expression in PSC-derived exosomes. Following exosome uptake, these miRNAs promote PC progression and metastasis by suppressing the PTEN/AKT pathway.
The biological function of long non-coding RNA00261 (Linc00261) has been widely investigated in various types of cancer. The aim of the present study was to explore the role of Linc00261 in pancreatic cancer (PC). The expression of Linc00261 in patients with PC and PC cell lines was assessed using reverse transcription-quantitative PCR and the association of Linc00261 expression with survival was analyzed in the online database, GEPIA. The effects of Linc00261 on PC cell metastasis in vitro and in vivo were determined using a wound healing assay, Transwell invasion assays and a nude mouse model of liver metastasis. The relationship between Linc00261, the miR-552-5p/forkhead box O3 (FOXO3) axis and the Wnt signaling pathway were determined using bioinformatics analysis, dual luciferase assay and western blotting. Linc00261 expression was significantly decreased in PC tissues and cell lines, and reduced expression was associated with less favorable outcomes in patients with PC. Linc00261 overexpression inhibited migration and invasion of PC cells in vitro, whereas knockdown of Linc00261 increased migration and invasion. Linc00261 overexpression also decreased metastasis of PC cells in vivo. Linc00261 was revealed to directly bind to microRNA (miR)-552-5p and to decrease the expression of miR-552-5p. In addition, Linc00261 overexpression increased the expression of FOXO3, a target gene of miR-552-5p, as well as inhibited the Wnt signaling pathway. Overexpression of miR-552-5p in Linc00261-overexpressing PC cells increased migration and invasion, as well as decreased the expression of FOXO3 and members of the Wnt signaling pathway. Collectively, the present study demonstrated that Linc00261 inhibited metastasis and the Wnt signaling pathway of PC by regulating the miR-552-5p/FOXO3 axis. Linc00261 may suppress the development of PC, and serve as a potential biomarker and effective target for the diagnosis and treatment of PC.
Hypoxia is involved in the development of pancreatic cancer (PC). The responses of hypoxia-associated genes and their regulated mechanisms are largely unknown. In this study, through bioinformatic analysis and quantitative real-time polymerase chain reaction, the YEATS domain containing 2 (YEATS2) was determined to be a key hypoxia-associated gene. It was increased in PC cells under hypoxia, upregulated in PC tissues, and predicted poor outcome. YEATS2 inhibition decreased the proliferation and migration of PC cells under both normoxia and hypoxia in vitro as well as proliferation and metastasis in vivo. We found that hypoxia-inducible factor 1α (HIF1α) regulated the expression of YEATS2 via binding to the hypoxia response element (HRE) of YEATS2 and coexpressed with YEATS2 in PC tissues. Overexpression of YEATS2 blocked the inhibitory effects of HIF1α silence on PC cell proliferation and migration under hypoxia. Collectively, our study revealed that YEATS2 is a target gene of HIF1α and promotes PC development under hypoxia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.